Cho p là số nguyên tố lớn hơn 3 . Hỏi p2 + 2024 là số nguyên tố hay hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
Ta có: $p$ là số nguyên tố $>3$
suy ra $p\not\vdots 3$
Số chính phương chia 3 dư 0 hoặc 1 mà $p^2$ là số chính phương
$p^2\not\vdots 3$ suy ra $p^2 \equiv 1 (mod 3) $
Mà $2009 \equiv 2 (mod 3)$
nên $p^2+2009 \equiv 3 \equiv 0 (mod 3)$
Hay $p^2+2009 \vdots 3$
mà $p^2+2009>3$ nên $p^2+2009$ là hợp số
Ta chứng minh p + 1 \(⋮\)2,3
- Vì p là số nguyên tố lớn hơn 3
=> p + 1 = 2k + 1 => p + 1 = 2k + 1 + 1 = 2k + 2 = 2 ( k + 1)
Mà : k + 1 \(\in\) N => 2 ( k + 1 ) \(⋮\)2 (1)
- Vì p là số nguyên tố lớn hơn 3
=> p = 3k + 1 hoặc p = 3k + 2
+ Trường hợp 1 : p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 )
Mà : k + 1 \(\in\) N ; p > 3 => k \(\ge\) 1 => 3 ( k + 1 ) là hợp số
=> p + 2 là hợp số ( vô lý )
=> p = 3k + 2 => p + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 )
Mà : k + 1 \(\in\) N => 3 ( k + 1 ) \(⋮\)3 hay p + 1 \(⋮\)3 (2)
Từ (1) và (2) => p + 1 \(⋮\)6 (đpcm)
p là số nguyên tố lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2
Mà dạng 3k+1 không thể xảy ra nên p = 3k+2
Do đó, ta có: p2+2012 = (3k+2)2+2012 = (3k+2)(3k+2)+2012
= 3k(3k+2)+2(3k+2)+2012 = 9k2+6k+6k+4+2012
= 9k2+12k+2016 = 3(3k2+4k+672)
=> p2+2012 chia hết cho 3 => p2+2012 là hợp số
p là số nguyên tố lớn hơn 3 nên p chia 3 dư 1 hoặc 2 và p là số lẻ
=>p-1 là số chẵn và p+1 cũng là số chẵn
=>(p-1)(p+1) chia hết cho 2*4=8(Vì p-1 và p+1 là hai số chẵn liên tiếp nên tích của chúng chia hết cho 8)
=>\(p^2-1⋮8\)(1)
TH1: p=3k+1
\(p^2-1=\left(p-1\right)\left(p+1\right)\)
\(=\left(3k+1-1\right)\left(3k+1+1\right)\)
\(=3k\cdot\left(3k+2\right)⋮3\)(2)
Từ (1),(2) suy ra \(p^2-1⋮BCNN\left(3;8\right)=24\)(4)
TH2: p=3k+2
\(p^2-1=\left(p-1\right)\left(p+1\right)\)
\(=\left(3k+2-1\right)\left(3k+2+1\right)\)
\(=3\left(k+1\right)\left(3k+1\right)⋮3\)(3)
Từ (1) và (3) suy ra \(p^2-1⋮BCNN\left(3;8\right)=24\)(5)
Từ (4) và (5) suy ra \(p^2-1⋮24\)
-Vì p,q là 2 số nguyên tố lớn hơn 3 \(\Rightarrow\)p,q có dạng \(3k+1\) hoặc \(3h+2\).
-Có: \(p^2-q^2=p^2+pq-pq-q^2=p\left(p+q\right)-q\left(p+q\right)=\left(p+q\right)\left(p-q\right)\).
*\(p=3k+1;q=3h+2\).
\(p^2-q^2=\left(3k+1+3h+2\right)\left(3k+1-3h-2\right)=\left(3k+3h+3\right)\left(3k+1-3h-2\right)⋮3\)
-Các trường hợp p,q có cùng số dư (1 hoặc 2) khi chia cho 3:
\(\Rightarrow\left(p^2-q^2\right)⋮3̸\).
-Vậy \(\left(p^2-q^2\right)⋮3\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3
Suy ra `p^2` luôn chia 3 dư 1
Mà `2024` chia 3 dư 2
Nên `p^2+2024` chia hết cho 3
Do đó `p^2+2024` là hợp số
Giải:
Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3
Vì p là số nguyên tố nên p2 là số chính phương
Vì p không chia hết cho 3 nên p2 không chia hết cho 3
⇒ p2 : 3 dư 1 tính chất số chính phương, một số chính phương chia 3 chỉ có thể dư 1 hoặc không dư.
Vậy p2 = 3k + 1
⇒ p2+2024 = 3k + 1 + 2024 = 3k+(1+2024) = 3k + 2025 =3(k+675)⋮3
Vậy p2 + 2024 là hợp số
Kết luận: nếu p là số nguyên tố lớn hơn 3 thì p2 + 2024 là hợp số