cứu em
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha.
Xác định N: Qua M vẽ MN // BD (N thuộc SB)
Mà M là trung điểm SD → N là trung điểm SB
\(\frac{V_{S.CMN}}{V_{S.CDB}}=\frac{SM}{SD}\cdot\frac{SN}{SB}=\frac{1}{4}\) → VS.CMN = 1/4 * VS.CDB
Mà VS.CDB = 1/2 * VS.ABCD
→ VS.CDB = 1/8 * VS.ABCD
Gọi H là trung điểm AB → SH vg AB → SH vg (ABCD)\(V_{S.ABCD}=\frac{1}{3}\cdot SH\cdot S_{ABCD}=\frac{1}{3}\cdot\frac{a\sqrt{3}}{2}\cdot a^2=\frac{a^3\sqrt{3}}{6}\)
\(\Rightarrow V_{S.CMN}=\frac{1}{8}\cdot\frac{a^3\sqrt{3}}{6}\)
TRẢ LỜI:
Đáp án: C
Trong hiện tượng giao thoa sóng trên mặt nước, khoảng cách giữa hai cực đại liên tiếp nằm trên đường nối tâm hai sóng có độ dài là một nửa bước sóng.
Cả hai buổi bán được:
\(15+\left(45\times\dfrac{3}{5}\right)=42\left(kg\right)\)
a/ Qua S dựng đường thẳng d//AD
d//AD; \(S\in\left(SAD\right)\Rightarrow d\in\left(SAD\right)\)
d//AD;AD//BC => d//BC mà \(S\in\left(SBC\right)\Rightarrow d\in\left(SBC\right)\)
=> d chính là giao tuyến của (SAD) và (SBC)
b/
Trong (SAC) gọi I là giao của AM với SO
\(I\in SO;SO\in\left(SBD\right)\Rightarrow I\in\left(SBD\right)\)
=> I là giao của AM với (SBD)
Ta có BC//AD \(\Rightarrow\dfrac{OC}{OA}=\dfrac{BC}{AD}=\dfrac{1}{2}\)
2 tg SAM và tg CAM có chung đường cao từ A->SC và MS=MC nên \(S_{SAM}=S_{CAM}=S\)
2 tg AMO và tg CMO có chung đường cao từ M->AC nên
\(\dfrac{S_{AMO}}{S_{CMO}}=\dfrac{OA}{OC}=2\Rightarrow\dfrac{S_{AMO}}{2}=S_{CMO}=\dfrac{S_{AMO}+S_{CMO}}{2+1}=\dfrac{S_{CAM}}{3}\)
\(\Rightarrow\dfrac{S_{AMO}}{S_{CAM}}=\dfrac{S_{AMO}}{S_{SAM}}=\dfrac{2}{3}\)
2 tg AMO và tg SAM có chung AM nên
\(\dfrac{S_{AMO}}{S_{SAM}}=\) đường cao từ O->AM/đường cao từ S->AM \(=\dfrac{2}{3}\)
2 tg OMI và tg SMI có chung IM nên
\(\dfrac{S_{OMI}}{S_{SMI}}=\)đường cao từ O->AM/đường cao từ S->AM\(=\dfrac{2}{3}\)
2tg OMI và tg SMI có chung đường cao từ M->SO nên
\(\dfrac{S_{OMI}}{S_{SMI}}=\dfrac{OI}{SI}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{OI}{2}=\dfrac{SI}{3}=\dfrac{OI+SI}{2+3}=\dfrac{SO}{5}\Rightarrow\dfrac{SI}{SO}=\dfrac{3}{5}\)
c/
Gọi P là trung điểm của SA, Xét tg SAD có
PA=PS; ND=NS (gt) => PN là đường trung bình của tg SAD
=> PN//AD và \(PN=\dfrac{1}{2}AD\)
Ta có
PN//AD; AD//BC => PN//BC
\(AD=2BC\Rightarrow BC=\dfrac{1}{2}AD\)
=> PN//BC và \(PN=BC=\dfrac{1}{2}AD\)
=> BCNP là hbh (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)
=> CN//BP (cạnh đối hbh) mà \(BP\in\left(SAB\right)\) => CN//(SAB)
a.
Qua S kẻ đường thẳng d song song AD và BC
Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\\S\in d\\d||AD\end{matrix}\right.\) \(\Rightarrow d\in\left(SAD\right)\)
\(\left\{{}\begin{matrix}S\in\left(SBC\right)\\S\in d\\d||BC\end{matrix}\right.\) \(\Rightarrow d\in\left(SBC\right)\)
\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)
b.
Trong mp (SAC), nối AM cắt SO tại I
\(\left\{{}\begin{matrix}O\in BD\in\left(SBD\right)\\S\in\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow SO\in\left(SBD\right)\)
\(I\in SO\Rightarrow I\in\left(SBD\right)\)
\(\Rightarrow I=AM\cap\left(SBD\right)\)
Do AD song song BC, áp dụng định lý Thales:
\(\dfrac{OA}{OC}=\dfrac{AD}{BC}=2\) \(\Rightarrow OA=2OC=2\left(AC-OA\right)\Rightarrow\dfrac{OA}{AC}=\dfrac{2}{3}\)
Áp dụng định lý Menelaus:
\(\dfrac{OA}{AC}.\dfrac{CM}{MS}.\dfrac{SI}{IO}=1\Leftrightarrow\dfrac{2}{3}.1.\dfrac{SI}{IO}=1\)
\(\Rightarrow2SI=3IO=3\left(SO-SI\right)\)
\(\Rightarrow5SI=3SO\Rightarrow\dfrac{SO}{SI}=\dfrac{3}{5}\)