x+48 chia hết cho 24; x+36 chia hết cho 12; 59<x<91
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x⋮6;x⋮24;x⋮40
→xϵ BC[6;24;40]
TA CÓ:
6=2.3
24=23.3
40=23.5
→BCNN[6;24;40]=23.3.5=60
BC[6;24;40]=B[60]={1;2;3;4;5;6;10;12;15;20;30;60}
hay x ϵ {1;2;3;4;5;6;10;12;15;20;30;60}
CÂU SAU TRÌNH BÀY NHƯ THẾ NHƯNG LÀ ƯỚC THÔI !
A) 24 ⋮ x; 18 ⋮ x nên x ƯC(24; 18)
24 = 2³.3
18 = 2.3²
⇒ ƯCLN(24; 18) = 2.3 = 6
⇒ x ∈ ƯC(24; 18) = Ư(6) = {1; 2; 3; 6}
Mà x ≥ 9
⇒ Không tìm được x thỏa mãn yêu cầu
B) 12 ⋮ x; 20 ⋮ x nên x ∈ ƯC(12; 20)
12 = 2².3
20 = 2².5
⇒ ƯCLN(12; 20) = 2² = 4
⇒ x ∈ ƯC(12; 20) = Ư(4) = {1; 2; 4}
Mà x ≥ 5
⇒ Không tìm được x thỏa mãn yêu cầu
C) 24 ⋮ x; 36 ⋮ x và x lớn nhất
⇒ x = ƯCLN(24; 36)
24 = 2³.3
36 = 2².3²
⇒ x = ƯCLN(24; 36) = 2².3 = 12
D) 64 ⋮ x; 48 ⋮ x nên x ∈ ƯC(64; 48)
64 = 2⁶
48 = 2⁴.3
⇒ ƯCLN(64; 48) = 2⁴ = 16
⇒ x ∈ ƯC(64; 48) = Ư(16) = {1; 2; 4; 8; 16}
Mà 3 ≤ x 20
⇒ x ∈ {4; 8; 16}
Bài 1: \(x\) ⋮ 28; \(x\) ⋮ 16 nên \(x\) \(\in\) BC(28; 16)
28 = 2.7; 16 = 24 BCNN(28; 16) = 24.7 = 112
\(x\) \(\in\) B(112) = {0; 112; 224; 336; 448; 560;..}
Vì 300 < \(x\) < 500 nên \(x\) \(\in\) {336; 448}
Vậy \(x\) \(\in\) {336; 448}
Bài 2: 64 ⋮ \(x\); 24 ⋮ \(x\) nên \(x\) \(\in\)ƯC(64; 24)
64 = 26; 24 = 23.3; ƯCLN(64; 24) = 23 = 8
\(x\) \(\in\) Ư(8) = {1; 2; 4; 8}
Vì \(x\) > 2 nên \(x\) \(\in\) {4; 8}
Vậy \(x\) \(\in\) {4; 8}