K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2015

mình biết làm nhưng dài quá bạn tra trên google là đc

22 tháng 1 2019

\(2\left(xy-3\right)=x\)

\(\Leftrightarrow2xy-6=x\)

\(\Leftrightarrow2xy-x=0+6\)

\(\Leftrightarrow x\left(2y-1\right)=6\)

\(\Rightarrow x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(\Rightarrow y\in\left\{....\right\}\)

28 tháng 4 2020

Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)

\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)

\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)

Áp dụng BĐT Cosi ta có:

\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)

\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)

26 tháng 8 2016

(x+3).(y+1)=3

--->x+3,y+1 thuộc Ư(3)={1,3,-1,-3}

Ta có bảng sau

x+3               1                           -1 

y+1               3                           -3

y                   2                           -4

x                   -2                          -4

--->(x,y) thuộc(-2,2),(-4,-4)

21 tháng 10 2017

\(xy-x-y=2\)

\(\Rightarrow xy-x-y+1=3\)

\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=3\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)

Tự xét được chứ :">

21 tháng 10 2017

thanks