Khi chia 1 số a cho 9 được dư là 5,khi chia b cho 9 được dư là 6, chia c cho 9 được dư la 4. Hỏi khi chia a+b cho 9, a+c cho 9 được số dư là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a : 9 dư 5 \(\Rightarrow\) a = 9k + 5 (k \(\in\) N)
b : 9 dư 6 \(\Rightarrow\)b = 9m + 6 (k \(\in\) N)
c : 9 dư 4 \(\Rightarrow\) c = 9n + 4 (k \(\in\) N)
*Xét: a + b = 9k + 9m + 11
\(\Leftrightarrow\) a + b = 9 . (k + m + 1) + 2
\(\Rightarrow\) (a + b) : 9 dư 2.
*Xét: a + c = 9k + 9n + 9
\(\Leftrightarrow\) a + c = 9 . (k + n + 1)
\(\Rightarrow\) (a + c) \(⋮\) 9
\(\Rightarrow\) (a + c) : 9 dư 0.
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
Câu a: vì tổng của 2 số dư của a+b=9 nên t có : a+b chia hết cho 9 và 4+5 chia hết cho 9 nên suy ra a+b chia hết cho 9 b: dư4
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
Có \(36=4\times9\), \(A\) chia cho \(4\) dư \(2\) nên \(A\) chia cho \(36\) được số dư là một số chia cho \(4\) dư \(2\). Do đó số dư của \(A\) khi chia cho \(36\) có thể là: \(2,6,10,14,18,22,26,30,34\).
Tương tự \(A\) chia cho \(9\) có dư \(4\) nên số dư của \(A\) chia cho \(36\) là một số chia cho \(9\) dư \(4\) nên có thể là: \(4,13,22,31\).
Suy ra số dư của \(A\) cho \(36\) là \(22\).
Ta chọn một số chia 9 dư 5 6 4 bất kì:ta lấy số 14 15 13 đã chia 9 dư 5 6 4
=>14 +15 : 9 =3,(2) rồi ta lấy 3 x 9 =27 29-27=2
=>14+13 : 9 =3 rồi ta lấy 3 x 9 =27 27 - 27 =0
a+b chia 9 dư 2
a+c chia 9 dư 0
khi nao can noi minh minh tra loi cho