K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =(6x)^2-(3x-2)^2

=(6x-3x+2)(6x+3x-2)

=(9x-2)(3x+2)

d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)

\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)

=8x(x^2+1)

e: =(4x)^2-2*4x*3y+(3y)^2

=(4x-3y)^2

f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)

\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)

g: =(4x)^3+1^3

=(4x+1)(16x^2-4x+1)

k: =x^3(27x^3-8)

=x^3(3x-2)(9x^2+6x+4)

l: =(x^3-y^3)(x^3+y^3)

=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)

a: \(=\dfrac{6}{3}\cdot x\cdot\dfrac{y^2}{y}=2xy\)

b: \(=\dfrac{62}{2}\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^3}{y^2}=31xy\)

c: \(=\dfrac{-18}{6}\cdot\dfrac{x^4}{x^2}\cdot\dfrac{y^3}{y}=-3x^2y^2\)

d: \(=\dfrac{27}{9}\cdot\dfrac{x^5}{x^3}\cdot\dfrac{y^6}{y^3}=3x^2y^3\)

e: \(=\dfrac{18}{12}\cdot\dfrac{x^3}{x}\cdot\dfrac{y^4}{y^3}=\dfrac{3}{2}x^2y\)

1: \(=\left(x-3y\right)\left(x-y\right)-\left(x-3y\right)=\left(x-3y\right)\left(x-y-1\right)\)

4: \(=6x^2-4xy+3xy-2y^2+3x-2y\)

\(=\left(3x-2y\right)\left(2x+y\right)+3x-2y=\left(3x-2y\right)\left(2x+y+1\right)\)

 

 

22 tháng 8 2023

a) \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

b) \(x^2-3y^2\)

\(=x^2-\left(y\sqrt{3}\right)^2\)

\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)

\(=\left(5x-5y\right)\left(x+y\right)\)

\(=5\left(x-y\right)\left(x+y\right)\)

d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)

\(=\left[3\left(x-y\right)+2\left(x+y\right)\right]\left[3\left(x-y\right)-2\left(x+y\right)\right]\)

\(=\left(3x-3y+2x+2y\right)\left(3x-3y-2x-2y\right)\)

\(=\left(5x-y\right)\left(x-5y\right)\)

e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)

\(=\left(2x-1\right)^2-\left(x+1\right)\)

\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)

\(=3x\left(x-2\right)\)

f) \(x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

g) \(27x^3-0,001\)

\(=\left(3x\right)^3-\left(0,1\right)^3\)

\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)

h) \(125x^3-1\)

\(=\left(5x\right)^3-1^3\)

\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)

10 tháng 2 2022

b) \(\hept{\begin{cases}x^2-4x+3=0\left(1\right)\\x^2+xy+y^2=3\left(2\right)\end{cases}}\)

Từ (1) <=> (x - 1)(x - 3) = 0 \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Với x = 3 => (2) <=> 32 + 3y + y2 = 3 

<=> y2 + 3y + 6 = 0 

<=> \(\left(2y+3\right)^2=-15\)<=> PT vô nghiệm

Với x = 3 => (1) <=> 12 + y + y2 = 3 

<=> (y - 1)(y + 2) = 0

<=> \(\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

=> Hệ có 2 nghiệm (x ; y) = (1;1) ; (1 ; - 2) 

b: \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)

c: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

e: \(a^2y^2-2axby+b^2x^2\)

\(=\left(ay\right)^2-2\cdot ay\cdot bx+\left(bx\right)^2\)

\(=\left(ay-bx\right)^2\)

f: \(100-\left(3x-y\right)^2\)

\(=\left(10-3x+y\right)\left(10+3x-y\right)\)

g: \(64x^2-\left(8a+b\right)^2\)

\(=\left(8x\right)^2-\left(8a+b\right)^2\)

\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)