Tìm GTLN của biểu thức \(K=-x^2+6xy-10y^2-2x+10y+2010\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(K=\left(-x^2-9y^2-1+6xy+6y-2x\right)+\left(-y^2+4y-4\right)+2015\)
\(=-\left[x^2+\left(3y\right)^2+1^2+2.x.3y+2.x.\left(-1\right)+2.3y.1\right]-\left(y^2-4y+4\right)+2015\)
\(=-\left(x-3y+1\right)^2-\left(y-2\right)^2+2015\)
Ta thấy \(-\left(x-3y+1\right)^2\le0\forall x;y\text{ }\text{and}\text{ }-\left(y-2\right)^2\le0\forall y\)
\(\Rightarrow-\left(x-3y+1\right)^2-\left(y-2\right)^2\le0\forall x;y\)
\(\Rightarrow K=-\left(x-3y+1\right)^2-\left(y-2\right)^2+2015\le2015\forall x;y\)
K đạt GTLN là 2015 khi \(\hept{\begin{cases}x-3y+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)
\(A=x^2+10y^2+2x-6xy-10y+25\)
=> \(A=x^2+2x\left(1-3y\right)+\left(1-3y\right)^2-\left(1-3y\right)^2-10y+25\)
=> \(A=\left(x+1-3y\right)^2-1+6y-9y^2-10y+25\)
=> \(A=\left(x+1-3y\right)^2-9y^2-4y+24\)
=> \(A=\left(x+1-3y\right)^2-\left(3y\right)^2-2.3y.\frac{2}{3}-\left(\frac{2}{3}\right)^2+\frac{220}{9}\)
=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\)
Có \(\left(x+1-3y\right)^2\ge0\)với mọi x, y
\(\left(3y+\frac{2}{3}\right)^2\ge0\)với mọi y
=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\ge\frac{220}{9}\)với mọi x, y
Dấu "=" xảy ra <=> \(\left(x+1-3y\right)^2=0\)<=> \(x+1-3y=0\)
và \(\left(3y+\frac{2}{3}\right)^2=0\)=> \(3y+\frac{2}{3}=0\)
=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)
Bổ xung phần kết luận
KL: Amin = \(\frac{220}{9}\)<=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)
a, ta có : \(x^4+2005x^2+2004x+2005\)
=\(x^4-x+2005x^2+2005x+2005\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2005\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2005\right)\)
b, ta có \(-x^2-10y^2+6xy-2x+10y+9\)
=\(-\left(x^2+1+2x-6xy+9y^2-6y\right)-y^2+4y-4+13\)=\(13-\left(x-3y+1\right)^2-\left(y-2\right)^2\le13\forall x\)
Vậy Max=13 \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)