K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vào địa chỉ này: 

https://olm.vn/hoi-dap/question/1100452.html 

Câu hỏi người ta đã hỏi rồi! 

Bạn chú ý tìm câu hỏi trước khi đặt câu hỏi

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

lấy bút xóa mà xóa hết là khỏe

24 tháng 1 2016

\(botay.com.vn\)

3 tháng 8 2019

Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath

6 tháng 7 2016

Trả lời hộ mình đi

26 tháng 1 2022

Ta có : \(P=\dfrac{a^2+b^2+c^2}{abc}\ge\dfrac{ab+bc+ca}{abc}=\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2}\)

=> Min P = 3/2 "=" khi a = b = c = 2

3 tháng 3 2016

24. trong vio toán  ak