K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2021

undefined

a: \(AC=5\sqrt{3}\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE

hay B nằm trên đường trung trực của AE(1)

Ta có: ΔABD=ΔEBD

nên DA=DE
nên D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD⊥AE

 

2: Xét tứ giác AHEB có 

\(\widehat{HAB}\) và \(\widehat{HEB}\) là hai góc đối

\(\widehat{HAB}+\widehat{HEB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AHEB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: \(\widehat{HAE}=\widehat{HBE}\)(hai góc cùng nhìn cạnh HE)

hay \(\widehat{HBC}=\widehat{EAC}\)(đpcm)

1: Xét ΔABC vuông tại A và ΔEHC vuông tại E có 

\(\widehat{HCE}\) chung

Do đó: ΔABC\(\sim\)ΔEHC(g-g)

4 tháng 4 2023

mình viết nhầm câu a là tam giác ABC đồng dạng với tam giác HBA ạ chứ không phải HCA

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

1: Xét ΔABC vuông tại A và ΔEHC vuông tại E có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔEHC

2: Xét tứ giác AHEB có \(\widehat{HAB}+\widehat{HEB}=180^0\)

nên AHEB là tứ giác nội tiếp

hay \(\widehat{HBC}=\widehat{EAC}\)

a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)

AD là phân giác

=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=35/7=5

=>DB=15cm; DC=20cm

b: Xét ΔCAB có DE//AB

nên DE/AB=CD/CB=CE/CA

=>CE/28=DE/21=20/35=4/7

=>CE=16cm; DE=12cm

2:

Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc FAE

=>AEDF là hình vuông