Chứng minh: 4^100 = 2^200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
200-(3+2/3+...+2/100)
=200-(3+2(1/3+...+1/100)
=200-(3+2 (1-2/3+1-3/4+...+1-99/100))
=200-(3+2(98-(2/3+3/4+...+99/100)))
=200-3-196-(2/3+3/4+...+99/100)
=1-(2/3+3/4+...+99/100)
Thay:1-(2/3+3/4+...+99/100)/2/3+3/4+......+99/100=1/(1/2)=2
Đặt A= 200- (3+\(\frac{2}{3}+\frac{2}{4}+.....+\frac{2}{100}\))
=\(197-\frac{2}{3}-\frac{2}{4}-....-\frac{2}{100}\)
=\(\frac{197.2}{2}-\frac{2}{3}-\frac{2}{4}-....-\frac{2}{100}\)
=\(2.\left(\frac{196+1}{2}-\frac{1}{3}-\frac{1}{4}-.....-\frac{1}{100}\right)\)
=\(2\left(\frac{196}{2}+\frac{1}{2}-\frac{1}{3}-.....-\frac{1}{100}\right)\)
=\(2\left(98+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-.....-\frac{1}{100}\right)\)
=\(2\left(\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+.....+1-\frac{1}{100}\right)\)
=\(2\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+.....+\frac{99}{100}\right)\)
Khi đó \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}}\)=\(\frac{2\left(\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}}\)=2(đpcm)
Đặt A là tên biểu thức trên
Ta có: \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)
\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+....+\left(1-\frac{1}{100}\right)}\)
\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}\)
\(A=2\)
ta có 200-(3+\(\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\)
=\(1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)
=\(2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
thay \(2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
ta có \(\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\left(dpcm\right)\)
x^200+x^100+1=x^100*(x^2+1)+1
x^4+x^2+1=x^2*(x^2+1)+1
mà x^100chia hết cho x^2
x^2+1chia hết cho x^2+1
1 chia hết cho1
suy ra x^100*(x^2+1)+1 chia hết cho x^2*(x^2+1)+1 hay x^200+x^100+1 chia hết cho x^4+x^2+1
vì x^200 chia hết cho 4 , x^100 chia hết cho x^2 và 1 chia hết cho 1 nên x^200+x^100+1 chia hếtcho x^4+x^2+1
**** bn nhe
Đặt x2=ax2=a. Cần chứng minh: a^100+a^50⋮a2+a+1a100+a50⋮a2+a+1
Sử dụng tính chất quen thuộc: a3m+1+a3n+2=a(a3m−1)+a2(a3n−1)−(a2+a+1)⋮a2+a+1
4^100=2^2.100=2^200
\(4^{100}=\left(2^2\right)^{^{100}}=2^{2.100}=2^{200}\)
Vậy \(4^{100}=2^{200}\)