Giải phương trình: \(\frac{2x}{x^2-4x+7}+\frac{3x}{2\left(x^2-5x+7\right)}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)
\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)
Lấy Logarit cơ số 2 hai vế, ta được :
\(2\left(x-1\right)^2=\left(\log_2105\right)x\)
\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)
\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)
Vậy phương trình đã cho có 2 nghiệm
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
a/ ĐKXĐ: \(x\ne\left\{-\frac{2}{3};\frac{1}{3}\right\}\)
\(\Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow3x=-15\Rightarrow x=-5\)
b/ ĐKXĐ: \(x\ne\left\{-\frac{4}{3};1\right\}\)
\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2+37x+28=12x^2-7x-5\)
\(\Leftrightarrow44x=-33\Rightarrow x=-\frac{3}{4}\)
c/ ĐKXĐ: \(x\ne\left\{-\frac{1}{4};0\right\}\)
\(\Leftrightarrow\frac{3\left(x^2-1\right)}{4x+1}+\frac{2\left(1-x^2\right)}{x}-\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{3}{4x+1}-\frac{2}{x}-1\right)=0\)
TH1: \(x^2-1=0\Rightarrow x=\pm1\)
TH2: \(\frac{3}{4x+1}-\frac{2}{x}-1=0\Leftrightarrow3x-2\left(4x+1\right)-x\left(4x+1\right)=0\)
\(\Leftrightarrow4x^2+6x+2=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)
Ta có x2 -5x +7 = x2 -5x +25/4+ 3/4 = (x -5/2)2 +3/4 > 0 với mọi x
Tương tự x2 -4x +7 = x2 -4x +4+3 >0 với mọi x
Vậy pt đã cho luôn xác định với mọi x
Đặt x2 -5x +7 = y suy ra: x2 -4x +7 = y+x ( đặt như vậy để dễ biến đổi)
Pt đã cho trở thành: 2x/(x+y) +3x/2y =1
Suy ra: 2x.2y +3x.(x+y)=2.(x+y).y
4xy +3xy +3x2= 2y2+2xy
3x2+5xy- 2y2=0
3x2+6xy – xy - 2y2=0 suy ra (3x – y)(x +2y)= 0 suy ra y = 3x hoặc x =-2y
Với y =3x ta có, x2 -5x +7 =3x suy ra x2 -8x +7=0 suy ra x= 1; x =7
Với x =-2y ta có, x= -2(x2 -5x +7) suy ra 2x2 -9x +14=0
2.(x2 -4,5 x +7) =0 suy ra x2 -2.9/4 x +81/16 + 31/16=0 nên pt này vô nghiệm
Vậy pt đã cho có 2 nghiệm là x =1; x =7