Vẽ hình tam giác góc ABC có góc A=40 độ ,tia AD là tia đối của tia Ax , tia OA là tia phân giác của gocs BAC ,tia Ax cắt cạnh BC tại điểm E
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì Ay // BC => góc yAC = góc ACB (sole trong)
góc yAx = góc ABC (đòng vị)
Mà góc ABC = góc ACB => góc yAC = góc yAx => Ay là phân giác góc CAx
b. Vì AD là phân giác góc trong BAC , Ay là phân giác góc ngoài CAx
=> Ay vuông góc với AD ( tính chất phân giác trong và ngoài )
Mà Ay // BC => góc yAD = góc ADB ( sole trong) => AD vuông góc với BC
#HT#
mình trả lời câu này vào đây nhé"
Cho tam giác ABC có A=40 độ. Trên tia đối của tia Ac lấy đ D trên nửa mặt phẳng bờ AC ko chứa đ B vẽ tia DX//BC. Cho bik góc xDC=70 độ. a) tính số đo ACB VÀ ABC
Bài làm:
Theo bài ra, ta có tia Dx//BC nên góc xDC= góc ACB=70 độ
Xét tam giác ABC có: góc A+góc B+góc C=180 độ , Mà góc A=40 độ, góc C=70 độ nên góc B sẽ = 180 độ -(40+70)=70 độ
ta có
góc DAE= 1/2 góc BAC ( AD là tia phân giác góc BAC)
goc FEC=1/2 góc DEC (EF là tia phân giác góc DEC)
góc BAC= góc DEC (2 góc đồng vị và AB//DE)
-> goc DAE=góc FEC
mà góc DAE và góc FEC nằm ở vị trí đồng vị
nên AD//EF
ta có
góc DAE =1/2 góc BAC (AD là tia phân giác góc BAC)
góc EAK=1/2 góc EAz ( AK là tia phân giác góc zAC)
-> góc DAE+ góc EAK= 1/2 ( góc BAC+ góc EAz)
mà góc BAC + góc EAz=180 ( 2 góc kề bù)
nên goc DAE+ góc EAK=1/2.180=90
-> goc DAK =90
-> DA vuông góc AK
lại có EK vuông góc At tai K (gt)
do dó AD//EK
ta có
AD//EK (cmt)
AD//EF(cmt)
-> EK trùng EF ( tiên đề Ơ clit)
-> E,K,F thẳng hàng
a: ΔBAC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(2\left(\widehat{IAC}+\widehat{ICA}\right)=90^0\)
=>\(\widehat{IAC}+\widehat{ICA}=45^0\)
Xét ΔIAC có \(\widehat{IAC}+\widehat{ICA}+\widehat{CIA}=180^0\)
=>\(\widehat{CIA}=180^0-45^0=135^0\)
b: CI và CK là hai tia phân giác của hai góc kề bù
=>\(\widehat{ICK}=90^0\)
\(\widehat{CIK}+\widehat{CIA}=180^0\)
=>\(\widehat{CIK}=45^0\)
Xét ΔCKI vuông tại C có \(\widehat{CIK}=45^0\)
nên ΔCKI vuông cân tại C
=>\(\widehat{CKI}=\widehat{CKA}=45^0\)