K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

a: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

19 tháng 12 2021

\(a,\left\{{}\begin{matrix}AM=MD\\BM=MC\\\widehat{AMB}=\widehat{CMD}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{DCM}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\\ b,AH\bot BC;DK\bot BC\Rightarrow AH\text{//}DK\\ \left\{{}\begin{matrix}AM=MD\\\widehat{AHM}=\widehat{DKM}=90^0\\\widehat{AMH}=\widehat{KMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AHM=\Delta DKM\left(c.g.c\right)\\ \Rightarrow AH=DK\)

19 tháng 12 2021

a: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

18 tháng 12 2023

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét ΔMBD và ΔMCA có

MB=MC

\(\widehat{BMD}=\widehat{CMA}\)

MD=MA

Do đó: ΔMBD=ΔMCA

=>\(\widehat{MBD}=\widehat{MCA}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//AC

c: Xét ΔDKB vuông tại K và ΔAHC vuông tại H có

DB=AC

\(\widehat{DBK}=\widehat{ACH}\)

Do đó: ΔDKB=ΔAHC

=>BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có; ΔMAB=ΔMDC

=>AB=DC

Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

Ta có: AB//DC

AB//CE

DC,CE có điểm chung là C

Do đó: D,C,E thẳng hàng

ta có: AB=CD

AB=CE

Do đó: DC=CE

mà D,C,E thẳng hàng

nên C là trung điểm của DE

30 tháng 12 2021

a/  Xét △ABM và △DMC có:

AM=MD(gt)

MB=MC(gt)

^AMB=^CMD(đối đỉnh)

⇒ΔAMB=ΔDMC(cmt)(đpcm).

b/ Ta có: ΔAMB=ΔDMC(cmt)

⇒^MAB=^MDC⇒^MAB=^MDC[ hai góc ở vị trí so le trong]

Vậy: AB // CD (đpcm).

14 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC
b: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

c: ΔMAB=ΔMDC

=>\(\widehat{MBA}=\widehat{MCD}\)

Xét ΔABH vuông tại H và ΔDCK vuông tại K có

AB=DC

\(\widehat{ABH}=\widehat{DCK}\)

Do đó: ΔABH=ΔDCK

=>BH=CK

BH+HK=BK

CK+HK=CH

mà BH=CK

nen BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có: AB//CE

AB//CD

CD,CE có điểm chung là C

Do đó: C,E,D thẳng hàng

Ta có: AB=EC

AB=CD

Do đó: EC=CD

mà C,E,D thẳng hàng

nên C là trung điểm của DE

18 tháng 12 2021

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

mk chịu

khó quá

tk mk nha