cho đa thức f(x)=\(x^{10}-101x^9+101x^8-101x^7+...-101x\)\(+101\)
tính f(100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^{10}+101x^9+101x^8-101x^7+...-101x+101\)
\(=x^{10}-100x^9-x^9+100x^8+x^8-100x^7-x^7+....-101x+101\)
\(=x^9.\left(x-100\right)-x^8\left(x-100\right)+x^7\left(x-100\right)-.....+x\left(x-100\right)-\left(x-101\right)\)
\(\Rightarrow f\left(100\right)=1\)
Ta có:
\(x^{10}-\left(100+1\right)x^9+\left(100+1\right)x^8-\left(100+1\right)x^7+.....-\left(100+1\right)x+100+1\)
\(=x^{10}-100x^9-x^9+100x^8+x^8-100x^7-x^7+......-100x-x+100+1\)
\(f\left(x\right)=x^{10}-\left(100+1\right)x^9+\left(100+1\right)x^8-\left(100+1\right)x^7+...-\left(100+1\right)x+100+1\)
\(=x^{10}-100x^9-x^9+100x^8+x^8-100x^7-x^7+...-100x-x+100+1\)
\(=x^9\left(x-100\right)-x^8\left(x-100\right)+x^7\left(x-100\right)-...+x\left(x-100\right)-\left(x-100\right)+1\)
\(=\left(x-100\right)\left(x^9-x^8+x^7-...+x-1\right)+1\)
Ta có: \(f\left(100\right)=\left(100-100\right)\left(100^9-100^8+100^7-...+100-1\right)+1\)
\(=0+1=1\)
Vậy f(100) = 1.
Ta có:
\(F\left(100\right)=100^{10}-101.100^9+101.100^8-101.100^7+...-101.100+101\)
\(=100-\left(100+1\right).100^9+\left(100+1\right).100^8-\left(100+1\right).100^7+...-\left(100+1\right).100+101\)
\(=100^{10}-100^{10}-100^9+100^9+100^8-100^8-100^7+...-100^2-100+101\)
\(=1\)
Ta có:\(101=100+1=x+1\)
\(\Rightarrow F\left(100\right)=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1=1\)
f(100)=x8-(100+1)x7+(100+1)x6-(100+1)x5+....+(100+1)x2-(100+1)x+25
=x8-(x+1)x7+(x+1)x6-(x+1)x5+....+(x+1)x2-(x+1)x+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=25
vậy f(100)=25
Ta có : x=100=>101=x+1
Thay vào f(x), ta được : x10 -(x+1)x9 +(x+1)x8 - (x+1)x7 +....-(x+1)x +100
<=> x10 - x10 -x9 +x9 + x8 -x8 -x7 +.... -x2 -x +100
<=> -x+100
=> f(100) = -x+100=-100+100=0
ta có :
\(f\left(x\right)=x^{10}-101x^9+101x^8-...-101x+101\)
\(=x^{10}-x^9-100x^9+x^8+100x^8-...-x-100x+100+1\)
ta có :
\(f\left(100\right)=100^{10}-100^9-100\times100^9+100^8+100\times100^8-...-100-100\times100+100+1\)
\(=100^{10}-100^{10}-100^9+100^9+100^8-...-100^2-100+100+1\)
\(=1\)
vậy f(100)=1