1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)
A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)
2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)
A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)
3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\) là
4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\) là
A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )
5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)
A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1
6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là
A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)
7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)
8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0
A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)
9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a
10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\) là
11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\) là
A 2019 B 2020 C 2021 D 2018
12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a
13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)là
14 nếu \(log_ab=p\) hì \(log_aa^2.b^4\)bằng
A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)
15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng
A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)
16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng