tam giác ABC có AB = AC, M là trung điểm của BC
a) chứng minh tam giác AMB = tam giác AMC
b) chứng minh AM là phân giác của góc BAC
c) chứng minh AM là đường trung trực của đọan thẳng BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
a: Xét ΔAMB và ΔAMC có
AB=AC
BM=CM
AM chung
=>ΔAMB=ΔAMC
b: Xét ΔMAB vuông tại M va ΔMDC vuông tại M có
MB=MC
góc MBA=góc MCD
=>ΔMAB=ΔMDC
=>MA=MD
a
vì AM là tia phân giác của góc A=>góc BAM=CAM
xét tam giác AMB và tam giác AMC có:
góc BAM=CAM,AM chung,AB=AC=>tam giác AMB = tam giác AMC
b
vì tam giác AMB = tam giác AMC=>MB=MC=>M là trung điểm BC
vì tam giác AMB = tam giác AMC=>góc BAM=CAM mà góc BAM+CAM=180=>BAM=CAM=180 độ/2=90 độ=>AM vuông góc với BC
c
xét tam giác ABM và KCM có
MB=MC,MA=MK,góc BMA=CMK(vì đối đỉnh)=>tam giác ABM = KCM=>AB=CK
vì tam giác ABM = KCM=>góc ABM=KMB mà 2 góc trên ở vị trí so le trog=>AB//CK
Giải nề
A) xét ∆ amb và ∆ amc
Có AM chung
BM =MC ( M là trung điểm BC)
AB =AC (gt)
=> ∆ amb = ∆ amc ( c.c.c)
B) ∆ ABC có
AB = AC ( gt)
Nên ∆ ABC cân tại a
Có AM là trung tuyến
Nên cũng là đường cao
=> AM là đường trung trực của BC
C) ta có ∆ ABC là tam giác cân
Nên AM cũng là phân giác
=>Góc BAM = góc CAM = 1/2 góc bác = 25°
Ta có AM là đường cao
Hay AM vuông góc với BC
=> Góc AMB = 90°
Vì là ∆ vuông nên
Góc B = 90° -góc BAM
Góc B = 65°
Vậy ... Kết luận các câu trên nữa nha
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó:ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
nên \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của \(\widehat{BAC}\)
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra AM là đường trung trực của BC
xét tam giác AMB và tam giác AMC có:
MA chung
AB=AC (giả thiết)
MC=MB(M trung điểm BC)
Nên tam giác AMB=tam giác AMC(c.c.c)
b, Từ chứng minh a
=> góc MAB = góc MAC và AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ
=> góc AMB=góc AMC=180 độ :2=90 độ
Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát)
Và AM vuông góc BC ( chứng minh trên)
Và AM cắt đường vuông góc BC tại I
=> I là trọng tâm tam giác ABC
=> CI vuông góc CA
xét tam giác AMB và tam giác AMC có:
MA chung
AB=AC (giả thiết)
MC=MB(M trung điểm BC)
Nên tam giác AMB=tam giác AMC(c.c.c)
b, Từ chứng minh a
=> góc MAB = góc MAC và AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ
=> góc AMB=góc AMC=180 độ :2=90 độ
Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát)
Và AM vuông góc BC ( chứng minh trên)
Và AM cắt đường vuông góc BC tại I
=> I là trọng tâm tam giác ABC
=> CI vuông góc CA
a, +Xét tam giác ABM và ACM có:
AB=AC(Giả thiết) --
AM là cạnh chung) I =>tam giác ABM=ACM (C-C-C)
MB=MC(Giả thiết) --
b, +Ta có: tam giác ABM=ACM
=> góc AMB=góc AMC (2 góc tương ứng)
+Ta có:
góc AMB+AMC=180 ( 2 góc kề bù)
AMB+AMB=180
AMB = 90(độ)
=>AM vuông góc với BC
c, +Ta có: tam giác ABM=ACM
=> góc BAM=góc CAM(2 góc tương ứng)
=>AM là tia phân giác của góc BAC
hay AM là tia phân giác của góc A
Vậy a,tam giác ABM=ACM
b,AM vuông góc với BC
c,AM là tia phân giác của góc A