Chứng minh A chia hết cho 6 biết :
A = 5 + 52 + 53 + 54 + ...... + 52017 + 52018
Mình sẽ tick cho bạn có câu trả lời nhan và đúng nhất nha.
Mình cần rất gấp ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để thoả mãn số a chia 2 dư 1, chia 5 dư 1, chia 7 dư 1 thì a là 2 x 5 x 7 + 1 = 71
(Giải thích: (phần này k ghi nhé) nếu một số chia hết cho vài số nào đó và số đó cần là số bé nhất => số đó chính là tích của các số là ước của nó)
Mà số này chia hết cho 9 nên số a tối thiểu là 71 x 9 = 639
Đáp số: 639
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
A = (5+5^2)+(5^3+5^4)+....+(5^2017+5^2018)
= 5.(1+5)+5^3.(1+5)+....+5^2017.(1+5)
= 5.6+5^3.6+....+5^2017.6
= 6.(5+5^3+....+5^2017) chia hết cho 6
=> ĐPCM
k mk nha
\(A=5+5^2+5^3+5^4+...+5^{2017}+5^{2018}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2017}+5^{2018}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2017}\left(1+5\right)\)
\(A=5.6+5^3.6+...+5^{2017}.6\)
\(A=6\left(5+5^3+...+5^{2017}\right)\)chia hết cho 6 (đpcm)
Chúc bạn học tốt