cho tam giác ABC có \(\widehat{B}=45^0,\widehat{C}=30^0\),BC =\(\frac{4}{\sqrt{3}-1}\)cm. Tính độ dài đường cao AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
a, \(\overrightarrow{AB}=\left(3;1\right)\)
Phương trình đường thẳng AB:
\(\dfrac{x+3}{3}=\dfrac{y-7}{1}\Leftrightarrow x-3y+24=0\)
b, \(d\left(C,AB\right)=\dfrac{\left|-1-3.\left(-4\right)+24\right|}{\sqrt{1^2+3^2}}=\dfrac{7\sqrt{10}}{2}\)
c, \(AB=\sqrt{10};BC=\sqrt{145};CA=\sqrt{137}\)
Theo định lí hàm số cosin: \(cosC=\dfrac{BC^2+AC^2-AB^2}{2.BC.AC}=...\)
1 ,áp dụng bộ 3 pitago trong tam giác abc suy ra AC=5 cm dựa vào pitago đảo có : \(5^2+12^2\)= 13 suy ra tam giác ACD vuông tại c
S tứ giác = SABC +SADC =1/2 .3.4 +1/2. 5.12=36 cm ^2.
2,bài 2 vẽ hình lâu lém tự làm nha bn
3,
B1 minh da lam dc trc do roi nhung van cam on ban vi da giup do
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=75^o\)
* \(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\Rightarrow AB=\dfrac{BCsinC}{sinA}=a\left(1+\sqrt{3}\right)\)
* \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{BCsinB}{sinA}=a\left(\dfrac{-6+3\sqrt{2}}{2}\right)\)
bạn tự vẽ hình nha
áp dụng hệ thức lượng vào tam giác vuông AHC có AH=\(\tan30\cdot HC=\tan30\cdot6=2\sqrt{3}\)
tuong tu \(AB=\frac{AH}{\sin35}=\frac{2\sqrt{3}}{\sin35}\approx6\)