K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

a)

\(A=3+3^2+3^3+3^4+...+3^{120}\)

\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow2A=3^{121}-3\)

\(\Rightarrow A=\frac{3^{121}-3}{2}\)

b)

\(2A+3\)

\(=3^{121}-3+3\)

\(=3^{121}\)

Mà 3121 là lũy thừa của 3

\(\Rightarrow\) 2A + 3 là lũy thừa của 3.

20 tháng 12 2021

b: \(A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{58}\right)⋮13\)

20 tháng 12 2021

\(a,\Leftrightarrow2A=8+2^3+2^4+...+2^{21}\\ \Leftrightarrow2A-A=8+2^3+2^4+...+2^{21}-4-2^2-2^3-...-2^{20}\\ \Leftrightarrow A=2^{21}+8-4-2^2=2^{21}\left(đpcm\right)\\ b,A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ A=13\left(3+3^4+...+3^{58}\right)⋮13\)

6 tháng 1 2021

giúp e giải vs e đang cần gấp

6 tháng 1 2021

a, \(A=3+3^2+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+3^5+...+3^{119}\right)\)

\(\Rightarrow A⋮4\)

\(A=3+3^2+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{118}\right)\)

\(\Rightarrow A⋮13\)

b, \(3A=3^2+3^3+...+3^{121}\)

\(\Rightarrow2A=3^{121}-3=3\left(3^{120}-1\right)\)

Vì \(3^{120}=3^{4.30}\) có chữ số tận cùng là 1 suy ra \(3^{120}-1\) có chữ số tận cùng là 0

\(\Rightarrow A=\dfrac{3\left(3^{120}-1\right)}{2}\) có chữ số tận cùng là 0

c, Đề là \(2A+3\) thì có vẻ hợp lí hơn

\(2A+3=3^{121}-3+3=3^{121}\) là lũy thừa của 3

4 tháng 12 2015

d) Ta có A chia hết cho 3 

=> 2A chia hết cho 3 mà 3 cũng chia hết cho 3

=> 2A+3 chia hết cho A

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui
15 tháng 11 2017

a, Có 2A = 4.2+2^3+2^4+...+2^21

A=2A-A=(4.2+2^3+2^4+...+2^21)-(4+2^2+2^3+...+2^20) = 4.2 + 2^21 - 4 - 2^2 = 2^21

=> A là lũy thừa cơ số 2

b, Có 3A=3^2+3^3+3^4+...+3^101

2A=3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+....+3^100) = 3^101-3

=> 2A+3 = 3^101-3+3 = 3^101

=> A là lũy thừa của 3

k mk nha

14 tháng 11 2017

a, Có : A = (2+2^2++2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^97+2^98+2^99+2^100)

= 30 + 2^4.(2+2^2+2^3+2^4)+....+2^96.(2+2^2+2^3+2^4)

= 30 + 2^4.30 + .... + 2^96.30 

= 30.(1+2^4+....+2^96) chia hết cho 30

=> A chia hết cho 10

b, Có : 2A = 2^2+2^3+....+2^101

A=2A-A=(2^2+2^3+....+2^101)-(2+2^2+2^3+....+2^100) = 2^101 - 2

=> A + 2 = 2^101 là lũy thừa của 2

=> ĐPCM

6 tháng 12 2018

a)Dễ ,bạn chỉ cần nhóm các số hạng thích hợp rồi rút thừa số chung ra là xong.Bạn tự làm

b)\(A=1+3+3^2+...+3^{2017}\)

\(3A=3+3^2+3^3+...+3^{2018}\)

\(3A-A=2A=3^{2018}-1\Rightarrow2A+1=3^{2018}\) (là một lũy thừa)

6 tháng 12 2018

a thế thì bài mình lm đúng òi,tại không bt đúng hay hông nên mình thử hỏi các bạn

Thank bạn nha

15 tháng 8 2021

a, 

A = 2 + 22 + 23 +...+210

A = (2 + 22 ) + (23 +24 ) + ...+ (29 + 210 )

A = 2 ( 1+2 ) + 23(1+2 ) + ...+ 29(1+2)

A = 2 .3 + 23 .3 + ...+29.3

A = 3 ( 2+ 23 + ...+ 29 ) \(⋮\) 3 3

Vậy A \(⋮\) 3

b, A = 2 + 22 + 23 +...+210

A = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 )

A =  2 ( 1+2+22 + 23 + 24 ) + 26(1+2+22 + 23 + 24)

A = 2 . 31 + 26 .31

A = 31(2+26 ) \(⋮\) 31

vậy A \(⋮\) 31

d , A = 2 + 22 + 23 +...+210