K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

a) (n+3) Chia hết cho (n-1)

Ta có : (n+3)=(n-1)+4

Vì (n-1) chia hết cho (n-1) 

Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)

=> n-1 thuộc Ư(4)={1;2;4}

n-1     1          2             4

n         2          3            5

Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)

b)(4n+3) chia hết cho (2n+1)

Ta có : (4n+3)=2n.2+1+2

Vì (2n+1) chia hết cho (2n+1)

Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)

=> 2n+1 thuộc Ư(3)={1;3}

2n+1                 1              3 

2n                    0               2

n                      0              1

Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

5 tháng 1 2016

3a + 2b chia hết cho 17

3a + 2b  +17a chia hết cho 17

20a + 2b chia hết cho 17

2(10a  + b) chia hết cho 17

UCLN(2 , 17) = 1

10a + b chia hết cho 17

=> ĐPCM 

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

18 tháng 12 2015

Ta có: 17a chia hết cho 17

suy ra :17a+3a+b chia hết cho 17

suy ra :20a+2b chia hết cho 17

rút gọn cho 2

suy ra :10a+b a hết cho 17

do 3a+2b⋮⋮17

\Rightarrow⇒8(3a+2b)⋮⋮17

     Ta có 8(3a+2b)+10a+b

=24a+16b+10a+b

=34a+17b

17(2a+b)⋮⋮17

vậy 8(3a+2b)+10a+b  ⋮⋮17

             mà 8(3a+2b)⋮⋮17               (\forall∀a,b\in∈N)

      nên 10a+b⋮⋮17

16 tháng 6 2019

\(2\left(10a+b\right)-\left(3a+2b\right)\)

\(=20a+2b-3a-2b\)

\(=17a\)\(⋮\)\(17\)với \(\forall a\in N\)

Vì \(3a+2b\)\(⋮\)\(17\)với \(\forall a\in N\)

\(\Rightarrow2\left(10a+b\right)\)\(⋮\)\(17\)

\(\Leftrightarrow10a+b\)\(⋮\)\(17\)với \(\forall x\in N\)