1)Với n>=2. Chứng minh (1-2/6).(1-2/12).(1-2/20)....(1-2/n(n+1)>1/3
2) Tìm x,y biết x2+y2+1/x2+1/y2=4
Giúp mình nha mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left(x+\dfrac{y}{x}\right)^3\)
\(=\left(\dfrac{x^2}{x}+\dfrac{y}{x}\right)^3\)
\(=\left(\dfrac{x^2+y}{x}\right)^3\)
\(=\dfrac{x^6+3x^4y+3x^2y^3+y^3}{x^3}\)
f) \(\left(x-\dfrac{1}{2}\right)^3\)
\(=x^3-3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3\)
\(=x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}\)
h) \(\left(x+\dfrac{y^2}{2}\right)^3\)
\(=\left(\dfrac{2x}{2}+\dfrac{y^2}{2}\right)^3\)
\(=\left(\dfrac{2x+y^2}{2}\right)^3\)
\(=\dfrac{8x^3+12x^2y^2+6xy^4+y^6}{8}\)
k) \(\left(x-\dfrac{1}{3}\right)^3\)
\(=x^3-3\cdot x^2\cdot\dfrac{1}{3}+3\cdot x\cdot\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3\)
\(=x^3-x^2+\dfrac{x}{3}-\dfrac{1}{27}\)
m) \(\left(x+\dfrac{y^2}{3}\right)^3\)
\(=\left(\dfrac{3x}{3}+\dfrac{y^2}{3}\right)^3\)
\(=\left(\dfrac{3x+y^2}{3}\right)^3\)
\(=\dfrac{27x^3+27x^2y^2+9xy^4+y^6}{27}\)
Q) \(2\left(x^2+\dfrac{1}{2}y\right)\left(2x^2-y\right)\)
\(=2\left(2x^4-x^2y+x^2y-\dfrac{1}{2}y^2\right)\)
\(=2\left(2x^4-\dfrac{1}{2}y^2\right)\)
\(=4x^4-y^2\)
a = |2x-1/3|-7/4
Do |2x-1/3| \(\ge\) 0
|2x-1/3|-7/4 \(\ge\) 7/4
Dấu = xảy ra <=> 2x-1/3=0. =>. x= 1/6
b 1/3|x-2|+2|3-1/2 y|+4
Do |x-2| \(\ge\) 0
|3-1/2y| \(\ge\) 0
=> 1/3|x-2|+2|3-1/2 y|+4 \(\ge\) 4
Dấu = xảy ra <=>\(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
a: Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{6}\)
b: Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(2\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+2\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\left|x-2\right|\cdot\dfrac{1}{3}+\left|3-\dfrac{1}{2}y\right|\cdot2+4\ge4\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=6
Bài 3:
\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x^2-9\right)\left(x^2-1\right)+15\)
\(=x^4-10x^2+9+15\)
\(=x^4-10x^2+24\)
\(=\left(x^2-4\right)\left(x^2-6\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)
a) Giả sử `(x+1)^2 >= 4x` là đúng.
Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`
`<=>x^2+1>=2x`
`<=>x^2-2x+1>=0`
`<=> (x-1)^2>=0 forall x`.
Vậy điều giả sử là đúng.
b) `x^2+y^2+2 >=2(x+y)`
`<=> (x^2-2x+1)+(y^2-2y+1) >=0`
`<=>(x-1)^2+(y-1)^2>=0 forall x,y`
c) `(1/x+1/y)(x+y)>=4`
`<=> (x+y)/(xy) (x+y) >=4`
`<=> (x+y)^2 >= 4xy`
`<=> x^2+2xy+y^2>=4xy`
`<=> (x-y)^2>=0 forall x,y > 0`
d) `x/y+y/x>=2`
`<=> (x^2+y^2)/(xy) >=2`
`<=> x^2+y^2 >=2xy`
`<=> (x-y)^2>=0 \forall x,y>0`.
a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)
=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0
=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)
b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)
=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)
=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)
c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)(vì x>0,y>0)
=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)
d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)
=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)
Mình làm hơi tắt mong bạn thông cảm nhé
Chúc bạn học tốt
rút gọn P=2/x-(x2/(x2-xy)+(x2-y2)/xy-y2/(y2-xy)):(x2-xy+y2)/(x-y)
r tìm gt P với |2x-1|=1 ; |y+1|=1/2