Cho ΔABC có góc A = 900 và AH là đường cao. Gọi D là điểm đối xứng với H qua AB, E là điểm đối xứng với H qua AC. Gọi I là giao điểm của AB và DH, K là giao điểm của AC và HE.
a) Tứ giác AIHK là hình gì? Vì sao ?
b) Chứng minh 3 điểm D, A, E thẳng hàng.
c) Chứng minh CB = BD + CE.
d) Biết diện tích tứ giác AIHK là a(đvdt). Tính diện tích ΔDHE theo a.
a) Xét tứ giác AIHK có 3 góc vuông nên AIHK là hình chữ nhật.
b) Do D và H đối xứng nhau qua AB nên AI cũng là phân giác góc DAH.
Vậy thì \(\widehat{BAH}=\frac{\widehat{DAH}}{2}\)
Tương tự \(\widehat{CAH}=\frac{\widehat{EAH}}{2}\)
Vậy nên \(\widehat{DAE}=2\left(\widehat{BAH}+\widehat{CAH}\right)=180^o\)
Vậy D, A, E thẳng hàng.
c) Ta có ngay do D, H đối xứng với nhau qua AB nên BH = BD
Tương tự ta có HC = EC
Vậy nên C = BH + HC = BD + EC.
d) Ta thấy : \(\Delta ADI=\Delta AHI\Rightarrow S_{ADI}=S_{AHI}\)
Tương tự \(S_{AKH}=S_{AKE}\Rightarrow S_{AIHK}=S_{DIA}+S_{AKE}\)
\(\Rightarrow S_{AIHK}=\frac{1}{2}S_{DHE}\)
Vậy \(S_{DHE}=2a\left(đvdt\right)\)
Cô ơi