Cho 3 số x,y,z thỏa mãn x+y+z=3
Tính giá trị lớn nhất của B=xy+yz+zx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(P=xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=3\).
Đẳng thức xảy ra khi x = y = z = 1.
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)
<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1
Ta có BĐT đúng sau:
x2 + y2 + z2 >= xy + yz + zx
<=> (x + y + z)2 >= 3(xy + yz + zx)
<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)
với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1
=> Max P=3
Cauchy-Schwarz : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\left|xy+yz+zx\right|\ge xy+yz+zx\)(1)
Mặt khác :
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\)
Kết hợp (1)
=> \(9-2\left(xy+yz+xz\right)\ge xy+yz+zx\)
\(\Leftrightarrow3\left(xy+yz+zx\right)\le9\)
\(\Leftrightarrow xy+yz+zx\le3\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\\x+y+z=3\end{cases}}\)<=> x=y=z=1
Vậy MaxM=3 khi x=y=z=1
Tham khảo:
Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24
\(A=\sqrt{xy}\sqrt{xz}+\sqrt{yz}\sqrt{xy}+\sqrt{xz}\sqrt{yz}\)
\(A\le\frac{xy+xz+yz+xy+xz+yz}{2}=xy+yz+zx\)
\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)
=> \(A\le\frac{1}{3}\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{3}\)
với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1
ai tích mình tích lại nhưng phải lên điểm mình tích gấp đôi
Với mọi x,y,z ta luôn có
(x-y)2+(y-z)2+(z-x)2\(\ge\)0
<=> 2x2+2y2+2z2-2xy-2yz-2zx\(\ge\)0
<=> x2+y2+z2-xy-yz-zx\(\ge\)0
<=> (x2+y2+z2+2xy+2yz+2zx)-3xy-3yz-3zx \(\ge\)0
<=> (x+y+z)2\(\ge\)3(xy+yz+zx)
<=> 9\(\ge\)3(xy+yz+zx)
<=> 3\(\ge\)xy+yz+zx = B
Dấu "=" xảy ra khi x=y=z=1
Vậy max B=3 <=> x=y=z=1
đây mới là chuẩn nè