Cho hình bình hành MNPQ có MN=2MQ.Gọi E,F lần lượt là trung điểm của MN và PQ.Gọi I là giao điểm của QE và MP, cho biết MP vuông góc MQ và MN=12cm.Tính diện tích tam giác QMI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNQ có
A là trung điểm của MN
B là trung điểm của MQ
Do đó: AB là đường trung bình của ΔMNQ
Suy ra: AB//NQ và AB=NQ/2(1)
Xét ΔNPQ có
C là trung điểm của QP
D là trung điểm của NP
Do đó: CD là đường trung bình của ΔNPQ
Suy ra: CD//NQ và CD=NQ/2(2)
Từ (1) và (2) suy ra ABCD là hình bình hành
Theo tính chất: Hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường, ta suy ra I là trung điểm của NQ và MP.
Xét tam giác MQN có I là trung điểm NQ, IE // MN nên IE là đường trung bình tam giác.
Vậy nên IE = MN/2
Tương tự IF là đường trung bình tam giác ANP nên IF = MN/2
Vậy nên IE = IF hay I là trung điểm EF.
a) Xét tam giác QMN có :
A là trung điểm của MN
B là trung điểm của MQ
=) AB là đường trung bình của tam giác QMN
=) AB // MQ Và AB=\(\frac{1}{2}\)MQ (*)
Xét tam giác QPN có :
C là trung điểm của QP
D là trung điểm của NP
=) CD là đường trung bình của tam giác QPN
=) CD // QN Và CD=\(\frac{1}{2}\)QN (**)
Từ (*) và (**) =) Tứ giác ABCD là hình bình hành (1)
Xét tam giác MQP có :
B là trung điểm của MQ
C là trung điểm của QP
=) BC là đường trung bình của tam giác MQP
=) BC // MP
Do MNPQ là hình thoi =) MP\(\perp\)NQ
Mà BC // MP và AB // NQ
=) BC\(\perp\)AB (2)
Từ (1) và (2) =) ABCD là hình chữ nhật
b) Ta có : MQ=QP
Do B là trung điểm của MQ =) MB=BQ=\(\frac{MQ}{2}\)
Do C là trung điểm của QP =) QC=CP=\(\frac{QP}{2}\)
=) QB=QC
Do MNPQ là hình thoi =) QM là đường phân giác \(\widehat{MQP}\)
=) \(\widehat{MQN}\)=\(\widehat{NQP}\)=\(\frac{\widehat{MQP}}{2}\)
Xét tam giác QMN có:
MQ=MQ và \(\widehat{QMN}\)=600
=) QMN là tam giác đều
Xét tam giác MQN có :
NQ là đường trung tuyến=) NQ là đường phân giác của \(\widehat{MNQ}\)
=) \(\widehat{MNB}\)=\(\widehat{BNQ}\)=\(\frac{\widehat{MNQ}}{2}\)=\(\frac{60^0}{2}\)= 300
Xét tam giác QBN và tam giác QCN có :
QB=QC ( chứng minh trên )
\(\widehat{BQN}\)=\(\widehat{CQN}\) ( chứng minh trên )
QN là cạch chung
=) tam giác QBN = tam giác QCN (c-g-c)
=)\(\widehat{BNQ}\)=\(\widehat{QNC}\) =300 (2 góc tương ứng ) và BN=CN ( 2 cạch tương ứng )
=) Tam giác BNC là tam giác cân tại N (3)
Ta có : \(\widehat{BNQ}\)+\(\widehat{QNC}\)=\(\widehat{BNC}\)
=) 300 +300 =\(\widehat{BNC}\)
=) \(\widehat{BNC}\)=600 (4)
Từ (3) và (4) =) Tam giác BNC là tam giác đều
Trên FN và IP lấy điểm O sao cho OA=OF và OI=OP
xét tứ giác IAPF có OA=OF và OI=OP ( cách dựng)
-> IAPF là hình bình hành -> O là trung điểm IP
Xét T/g MIQ và PQN bằng nhau góc cạnh góc
-> PO=MI ( 2 cạnh t/u) MÀ OI=OP ->PO=OI=MI-> MI=1/3MP
có MN=2MQ -> MQ=6
ÁP dụng Pytago vào T/G PMQ vuông Tại M
-> MP=12^2-6^2=\(\sqrt{108}\)
MI=1/3 MP -> MI=\(\sqrt{108}:3\)=3.4
-> Diện tích tam giác QMI là (3.4x6):2=10.2