tìm hai số nguyên tố biết rằng nếu thêm 9 vào tổng các ước của chúng thì được tích của hai số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số nguyên tố đó là a và b
Ta có: a+b +1 +1 +9 = a.b (vì số nguyên tố chỉ có 2 ước là 1 và chính nó).
Suy ra: a.b –a -b =11
a.(b-1) – (b -1) = 12
(a-1).(b -1) =12
Suy ra a-1 là ước của 12
a-1 | 1 | 2 | 3 | 4 | 6 | 12 |
b-1 | 12 | 6 | 4 | 3 | 2 | 1 |
a | 2 | 3 | 4 | 5 | 7 | 13 |
b | 13 | 7 | 5 | 4 | 3 | 2 |
Vì a và b là các số nguyên tố nên ta có các cặp số cần tìm là:
2 và 13; 3 và 7;
Gọi số đó là ab, ta có hpt: a2 + b2 = ab + a.b và ab + 36 = ba
=> a = 7; b = 8 => ab = 78
gọi số đó là ab
theo đề bài có hệ phương trình
a^2 + b^2 = ab + a x b
ab + 36 = ba
giải hệ được ab là 48
Bài 2:
Số thư nhất là (80+14)/2=47
Số thứ hai là 47-14=33
Bài 3:
Gọi số thứ nhât là x
=>Số thứ hai là 7-x
Theo đề, ta co hệ: \(\dfrac{1}{x}+\dfrac{1}{7-x}=\dfrac{7}{12}\)
=>\(\dfrac{7-x+x}{x\left(7-x\right)}=\dfrac{7}{12}\)
=>x(7-x)=12
=>x(x-7)=-12
=>x^2-7x+12=0
=>x=3 hoặc x=4
=>Hai số cần tìm là 3;4
Bài 2 :
Gọi \(x,y\) là 2 số đó
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=80\\x-y=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=47\\y=33\end{matrix}\right.\)
Vậy 2 số đó là 47 và 33
Bài 3 :
Gọi \(x,y\) là 2 số cần tìm
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=7\\x-y=\dfrac{7}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{91}{24}\\y=\dfrac{77}{24}\end{matrix}\right.\)
Vậy 2 số đó là \(\dfrac{91}{24};\dfrac{77}{24}\)
Tìm hai số có hiệu bằng 76, biết rằng nếu viết thêm một chữ số 4 vào bên phải số bị trừ và giữ nguyên số trừ rồi thực hiện lại phép trừ thì được hiệu mới bằng 782.
Số lớn là: (867 - 9) : (10 + 1) x 10 + 9 = 789
Số bé là: 867 - 789 = 78
Đáp số: Số lớn: 789
Số bé: 78
Gọi số bé là ab ta có :
ab + ab9 = 867
ab + ab x 10 + 9 = 867
ab x ( 10 + 1 ) = 867 - 9
ab x 11 = 858
ab = 858 : 11
ab = 78
Vậy số bé là 78, số lớn là 789