Cho nửa đường tròn (O) đường kính BC. Vẽ 2 tiếp tuyến Bx, Cy của (O). Gọi A là điểm trên nửa đường tròn sao cho AB < AC. Tiếp tuyến tại A của (O) cắt Bx, Cy tại M, N.
a) Chứng minh MN = BM + CN
b) Chứng minh OM ⊥ AB và OM // AC
c) Vẽ đường cao AH của tam giác ABC. Chứng minh AH^2 = AB.AC.snB.cosB
d) Đường thẳng AC cắt Bx tại D. Chứng minh OD ⊥ BN
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TH
11 tháng 7 2018
Chứng minh sau ứng với trường hợp 2 tiếp tuyến Bx và Cy nằm trên cùng 1 nửa mp bờ BC chứa nửa đtròn (O)
a) áp dụng t/c 2 tiếp tuyến cắt nhau là ra ngay nhé
b) Ta có: MA = MB (t/c 2 tiếp tuyến cắt nhau)
OA= R = OB
=> OM là trung trực đoạn AB => OM _|_ AB (đpcm)
mặt khác, AC _|_ AB (ABC^ = 90o, góc nt chắn nửa đtròn)
=> OM // AC (cùng _|_ AB) (đpcm)
30 tháng 12 2021
a: Xét tứ giác OBMC có
\(\widehat{OBM}+\widehat{OCM}=180^0\)
Do đó: OBMC là tứ giác nội tiếp