CMR:\(2\left(4x+1\right)+\frac{108x-73}{\left(5-12x\right)\sqrt{3x-2}-20x+13}>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1
a) ta có \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\)
\(\Leftrightarrow\sqrt{12\left(x+\dfrac{1}{2}\right)^2+16}+\sqrt{20\left(x+\dfrac{1}{2}\right)^2+9}=-\left(2x+1\right)^2+7\)ta có : \(VT\ge\sqrt{16}+\sqrt{9}=7\) và \(VT\le7\)
\(\Rightarrow VT=VP\) \(\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)
b) điều kiện \(x>0\)
ta có : \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\) \(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-2=0\)
\(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}}=2\Leftrightarrow x+\sqrt{x}=2\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\left(N\right)\end{matrix}\right.\)
vậy \(x=1\)
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1
\(\frac{12x+1}{6x-2}-\frac{9x-5}{3x+1}=\frac{108x-36x^2-9}{4\left(9x^2-1\right)}\)
đkxđ \(x\ne\pm\frac{1}{3}\)
\(\Leftrightarrow\frac{12x+1}{2\left(3x-1\right)}-\frac{9x-5}{3x+1}=\frac{108x-36x^2-9}{4\left(3x-1\right)\left(3x+1\right)}\)
\(\Leftrightarrow\frac{\left(24x+2\right)\left(3x+1\right)}{4\left(3x-1\right)\left(3x+1\right)}-\frac{\left(36x-20\right)\left(3x-1\right)\left(3x+1\right)}{4\left(3x-1\right)\left(3x+1\right)}=\frac{-36x^2+10x-9}{4\left(3x-1\right)\left(3x+1\right)}\)
\(\Leftrightarrow72x^2+6x+24x+2-108x^2+60x+36x-20-108x+36x^2+9=0\)
\(\Leftrightarrow18x-9=0\)
\(\Leftrightarrow18x=9\)
\(\Leftrightarrow x=\frac{1}{2}\left(tmđk\right)\)
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)