K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Hình vuông

24 tháng 6 2021

Vì t/g FDC là t/g đều nên DF=DC=FC

Mà DC=AD=AB=BC    suy ra FC=BC

Suy ra t/g FCB cân tại C =>góc CFB=góc CBF      (1)

Mặt khác có:  góc FCB =góc DCB + góc DCF = 900 + 600 =1500

Suy ra : góc CFB + góc CBF =300     (2)

Từ (1) và (2) suy ra : góc CFB=góc CBF =150      (3)

Theo bài ra ta có :  góc EBC =150       (4)

Từ (3) và (4) suy ra 3 diểm B ,E ,F thẳng hàng

12 tháng 2 2020

Ta có : ADCˆ=ADEˆ+EDCˆADC^=ADE^+EDC^

=> 90O=ADEˆ+15O90O=ADE^+15O

=> ADEˆ=75OADE^=75O

Tương tự ta cũng có : BCEˆ=75oBCE^=75o

Xét ΔADEΔADE và ΔBCEΔBCE có :

AD = BC (do ABCD à hình vuông)

ADEˆ=BCEˆ(=75o)ADE^=BCE^(=75o)

DE=ECDE=EC (do tam giác ECD cân tại E- gt)

=> ΔADEΔADE = ΔBCEΔBCE (c.g.c)

=> AE = BE (2 cạnh tương ứng)

Mà : AD = AE

=> ΔADEΔADE cân tại A

Xét ΔADEΔADE ta có :

ADEˆ=AEDˆ=75oADE^=AED^=75o (tính chất tam giác cân)

=> DAEˆ=180O−(ADEˆ+AEDˆ)DAE^=180O−(ADE^+AED^)

=> DAEˆ=180O−2.75O=30ODAE^=180O−2.75O=30O

Chứng minh tương tự ta có : CBEˆ=30oCBE^=30o

Có : ABEˆ=ABCˆ−CBEˆ=90O−30O=60OABE^=ABC^−CBE^=90O−30O=60O

BAEˆ=BADˆ−EADˆ=90O−30O=60OBAE^=BAD^−EAD^=90O−30O=60O

Xét ΔABEΔABE có :

ABEˆ+BAEˆ+AEBˆ=180OABE^+BAE^+AEB^=180O

=> AEBˆ=180O−2.60O=60OAEB^=180O−2.60O=60O

Thấy : ABEˆ=BAEˆ=AEBˆ=60oABE^=BAE^=AEB^=60o

=> ΔABEΔABE là tam giác đều (đpcm)

26 tháng 2 2020

vẽ tam giác đều ADK(K và B cùng phía với AD)

=>ˆDAKDAK^=60∘60∘=>ˆKABKAB^=90∘90∘-60∘=30∘60∘=30∘.

ΔABKΔABK cân tại A=>ˆABK=75∘ABK^=75∘=>KBC=90∘−75∘=15∘90∘−75∘=15∘

tương tự

ΔDKCΔDKCcân tại D=>ˆDKC=180∘−30∘2=75∘DKC^=180∘−30∘2=75∘=>ˆKCB=15∘KCB^=15∘

ΔAEB=ΔBKCΔAEB=ΔBKC(g.c.g)=>AE=BK=KC

ΔADE=ΔKDCΔADE=ΔKDC(c.g.c)=>DE=DC(1), ˆADE=ˆKDC=30∘ADE^=KDC^=30∘=>ˆEDC=60∘EDC^=60∘ (2)

(1),(2)→→(1),(2)ΔEDCΔEDC đều