Số học sinh của một trường khi xếp hàng 3,hàng 4,hàng 5 đều vừa đủ nhưng khi xếp hàng 9 thì thiếu 1 bạn.Tính số học sinh của trường đó biết rằng số đó trong khoảng từ 400 đến 500
Ai nhanh mình tick cho mình cần gấp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số học sinh của trường đó là x (x thuộc N*; học sinh)
ta có :
x ⋮ 3
x ⋮ 4
x ⋮ 5
nên :
x thuộc BC(3; 4; 5)
BCNN(3;4;5) = 60
=> BC(3; 4; 5) = B(60) = {0; 60; 120; 180; 240; 300; 360; 420; 480; 540; ...}
mà x khoảng từ 400 đến 500
=> x = 420; 480
mà khi xếp thành 4 hàng thì x ⋮ 9
=> x = 420
Gọi số học sinh của một trường đó là a \(\left(400\le a\le500\right)\)
Khi xếp hàng 3, hàng 4, hàng 5 thì vừa đủ nên ta có:
\(\hept{\begin{cases}a⋮3\\a⋮4\\a⋮5\end{cases}}\Rightarrow a\in BC\left(3,4,5\right)\)và \(400\le a\le500\)
BCNN (3, 4, 5) = 3. 22. 5 = 60
\(a\in BC\left(3,4,5\right)=B\left(60\right)=\left\{0;60;120;180;240;300;360;420;480;...\right\}\)
Vì khi xếp hàng 9 thì thiếu 3 người nên a = 420
Vậy số học sinh của trường đó là; 420 học sinh
Gọi số học sinh khối 6 của trường đó là x (học sinh) (x ∈ N*)
Theo đề bài khi xếp hàng 4, hàng 5, hàng 6 đều thiếu 1 học sinh nên x + 1 chia hết cho 4, 5, 6. Mặt khác xếp hàng 7 thì vừa đủ nên x ⋮ 7. Mà số học sinh chưa đến 200 học sinh nên x < 200.
BCNN ( 4, 5, 6 ) = 60
BC ( 4, 5, 6 ) = B ( 60 ) = { 0; 60; 120; 180; 240; … }
Từ đó x + 1 ∈ { 60; 120; 180; 240; … }
Do đó x ∈ { 59; 119; 179; 239; … }
Mà x < 200. Nên x = 119 hoặc x = 179
Ta có 119 = 17 . 7 ; 179 không chia hết cho 7
Vậy x = 119 thích hợp
Số học sinh khối 6 của trường đó là 119 học sinh
Gọi số học sinh khối 6 của trường đó là x (học sinh) (x ∈ N*)
Theo đề bài khi xếp hàng 4, hàng 5, hàng 6 đều thiếu 1 học sinh nên x + 1 chia hết cho 4, 5, 6. Mặt khác xếp hàng 7 thì vừa đủ nên x ⋮ 7. Mà số học sinh chưa đến 200 học sinh nên x < 200.
BCNN ( 4, 5, 6 ) = 60
BC ( 4, 5, 6 ) = B ( 60 ) = { 0; 60; 120; 180; 240; … }
Từ đó x + 1 ∈ { 60; 120; 180; 240; … }
Do đó x ∈ { 59; 119; 179; 239; … }
Mà x < 200. Nên x = 119 hoặc x = 179
Ta có 119 = 17 . 7 ; 179 không chia hết cho 7
Vậy x = 119 thích hợp
Số học sinh khối 6 của trường đó là 119 học sinh.
gọi số hs khối 6 của trường đó là a<a thuộc N>
vì khi xếp a thành hàng 12,hàng 18,hàng 20 đều vừa đủ nên a chia hết cho 12;18;20
suy ra a thuộc vào bội chung của 12;18;20
12=2mu2.3
18=2.3mu2
20=2mu2.5
suy ra BCNN<12;18;20>=2mu2.3mu2.5=180
suy ra BC<12;18;20>=B<180>={0;180;360;540;...}
Mà a thuộc BC<12;18;20>;300 bé hơn hoặc bằng a bé hơn hoặc bằng 400
nên a=360
vậy khối 6 của trường đó có 360hoc sinh
Gọi số học sinh của trường đó là a
Do số Học sinh khi xếp hàng 20; 25; 30 đều dư 15 học sinh nên ( a - 15 )⋮ 20; ( a - 15 ) ⋮ 25; ( a - 15 ) ⋮ 30
Khi đó ( a - 15 ) là BC của 20, 25, 30
BC ( 20, 25, 30 ) = { 0; 300; 600; 900; … }
⇒ a - 15 ∈ { 0; 300; 600; 900; … }
⇒ a ∈ { 15; 315; 615; 915; … }
Do a chia hết cho 41 và a ∈ ( 600; 1000 ) nên a = 615
Gọi số học sinh của trường đó là a
Do số Học sinh khi xếp hàng 20; 25; 30 đều dư 15 học sinh nên ( a - 15 )⋮ 20; ( a - 15 ) ⋮ 25; ( a - 15 ) ⋮ 30
Khi đó ( a - 15 ) là BC của 20, 25, 30
BC ( 20, 25, 30 ) = { 0; 300; 600; 900; … }
⇒ a - 15 ∈ { 0; 300; 600; 900; … }
⇒ a ∈ { 15; 315; 615; 915; … }
Do a chia hết cho 41 và a ∈ ( 600; 1000 ) nên a = 615
Gọi số học sinh là x
Theo đề, ta có; \(\left\{{}\begin{matrix}x+1\in BC\left(2;3;4;5;6\right)\\x\in B\left(7\right)\\x< =300\end{matrix}\right.\Leftrightarrow x=119\)
Gọi số học sinh khối 6 của trường đó là x (x ∈ N*; x < 300).
Theo đề bài ta có: x + 1 ⋮ 2 , x + 1 ⋮ 3 , x + 1 ⋮ 4 , x + 1 ⋮ 5; x ⋮ 7
Do đó: x + 1 là BC ( 2 ; 3 ; 4 ; 5 )
BCNN ( 2 ; 3 ; 4 ; 5 ) = 60
BC ( 2 ; 3 ; 4 ; 5 ) = B (60) = { 0; 60; 120; 180; 240; 300; 360; … }
⇒ x + 1 ∈ { 60; 120; 180; 240; 300; 360; … }
Vì x ∈ N* nên x ∈ { 59; 119; 179; 239; 299; 359; … }
Vì x < 300 nên x ∈ { 59; 119; 179; 239; 299 }
Mà x ⋮ 7 nên x = 119.
Vậy số học sinh khối 6 của trường đó là 119 học sinh.