K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Đặt A=n^4+n^3+1 

với n=1=>A=3=>loại

với n\(\ge\)2 ta có: (2n2+n−1)2< 4A ≤(2n2+n) => 4A = ( 2n2+ n ) => n = 2 ( thỏa mãn )

1 tháng 1 2018

- bạn trả lời rõ ra 1 chút đc ko?

15 tháng 10 2020

Giả sử \(1!+2!+3!+4!+...+n!=x^2\left(x\in N\right)\)(*)

Xét  \(n=1\)khi đó \(VT\)(*)=1 là số chính phương

Xét  \(n=2\)khi đó \(VT\)(*)=5 không là số chính phương

Xét \(n=3\)khi đó \(VT\)(*)=9 là số chính phương

Xét \(n=4\) khi đó \(VT\)(*)=33 không là số chính phương

Xét \(n\ge5\)khi đó \(VT\)(*)=\(33+5!+6!+...+n!\), ta nhận thấy \(5!+6!+...+n!⋮5\)

\(\Rightarrow33+5!+6!+...+n!\)chia \(5\)dư \(3\)

Mà vế phâi (*) \(x^2\)là số chính phương nên chia cho 5 chỉ dư 0 hoặc 1 hoặc 4, không thể bằng vế trái.

Tổng hợp tất cả các trường hợp trên ta được \(n=1\)hoặc \(n=3\)

27 tháng 10

Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d

⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}

Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.

Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1

Kết luận: n \(\ne\) 3k - 1 

 

 

 

29 tháng 3 2015

Để S là số chính phưong => 1! + 2! + 3! + ... + n! = m^2

Với n = 1 thì S = 1! = 1 là số chính phưong

Với n = 2 thì S = 1! + 2! = 3 không là số chính phưong

Với n = 3 thì S = 1! + 2! + 3! = 9 là số chính phưong

Với n = 4 thì S = 1! + 2! + 3! + 4! = 33 không là số chính phưong

Với n > 5 thì S có tạn cùng là 3 ( Vì 5! tạn cùng là 0, 6!, 7!, 8!, ... cũng tận cùng là 0 cộng với 33 là tổng các giai thùă của bốn số đầu khác 0)

Vậy n = 1; n = 3

24 tháng 10 2017

Để S là số chính phưong => 1! + 2! + 3! + ... + n! = m^2

Với n = 1 thì S = 1! = 1 là số chính phưong

Với n = 2 thì S = 1! + 2! = 3 không là số chính phưong

Với n = 3 thì S = 1! + 2! + 3! = 9 là số chính phưong

Với n = 4 thì S = 1! + 2! + 3! + 4! = 33 không là số chính phưong

Với n > 5 thì S có tạn cùng là 3 ( Vì 5! tạn cùng là 0, 6!, 7!, 8!, ... cũng tận cùng là 0 cộng với 33 là tổng các giai thùă của bốn số đầu khác 0)

Vậy n = 1; n = 3

26 tháng 2 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:
Để $n^4+n^3+1$ là scp $\Leftrightarrow A=4n^4+4n^3+4$ cũng phải là scp

Xét $A-(2n^2+n+1)^2=4n^4+4n^3+4-(2n^2+n+1)^2=-5n^2-2n+3\leq -5-2n+3=-2-2n<0$ với mọi $n\geq 1$

$\Rightarrow A< (2n^2+n+1)^2(1)$

Xét $A-(2n^2+n-1)^2=4n^4+4n^3+4-(2n^2+n-1)^2=3n^2+2n+3>0$ với mọi $n\geq 1$

$\Rightarrow A> (2n^2+n-1)^2(2)$

Từ $(1); (2)\Rightarrow (2n^2+n-1)^2< A< (2n^2+n+1)^2$
$\Rightarrow A=(2n^2+n)^2$
$\Rightarrow (4n^4+4n^3+4)=(2n^2+n)^2$
$\Leftrightarrow 4-n^2=0$

$\Rightarrow n=2$

 

31 tháng 8 2017

Để \(n^2+n+1589\) là số chính phương thì \(n^2+n+1589=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4n^2+4n+6356=4a^2\)

\(\Leftrightarrow\left(4n^2+4n+1\right)+5355=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n+1\right)^2-\left(2a\right)^2=-5355\)

\(\)\(\Leftrightarrow\left(2n-2a+1\right)\left(2n+2a+1\right)=-5355\)

Từ đây xét 2n - 2a + 1 ; 2n + 2a + 1 là các ước của - 5355 là ra

31 tháng 8 2017

\(n^2+n+1589\)

\(n^2+n+1589=m^2\)

\(\Rightarrow\left(4n^2+1\right)^2+6355=4m^2\)

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\)

\(2m+2n+1>2m-2n-1>0\)

Ta viết:\(\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\cdot1=1271\cdot5=205\cdot31=155\cdot414\)

\(\Rightarrow n=\text{ 1588,316,43,28}\)