The figure below shows a square ABCD of side 6 cm. Given that E is the midpoint of AB, points F and G are on BC so that BF = FG = GC. What is the total area of the shaded region in cm2?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
You have to draw the geometry yourself.
\(A_{ABCD}=AB.AD=12.6=72\left(cm^2\right)\)
M is the midpoint of segment BC so we have: \(BM=MC=\frac{BC}{2}=\frac{6}{2}=3\left(cm\right)\)
For the midpoint of CD is N, we also have: \(DN=NC=\frac{CD}{2}=\frac{12}{2}=6\left(cm\right)\)
We have:
\(A_{AMN}=A_{ABCD}-\left(A_{ABM}+A_{NCM}+A_{ADN}\right)\\ =72-\left(\frac{1}{2}.AB.BM+\frac{1}{2}.NC.MC+\frac{1}{2}AD.DN\right)\\ =72-\left(\frac{1}{2}.12.3+\frac{1}{2}.6.3+\frac{1}{2}.6.6\right)\\ =72-45\\ =27\left(cm^2\right)\)
Thusly, the area of triangle AMN in square centimeters is 27.
Dịch: Cho ABCD là HCN có AB = 12cm, AD = 6 cm. M và N lần lượt là trung điểm của các cạnh BC và CD. Tính diện tích tam giác AMN với đơn vị cm2.
SABCD = \(AB\cdot AD=12\cdot6=72\left(cm^2\right)\)
SADN = \(\frac{AD\cdot DN}{2}=\frac{AD\cdot\frac{1}{2}CD}{2}=\frac{AD\cdot\frac{1}{2}AB}{2}=\frac{6\cdot\frac{1}{2}12}{2}=18\left(cm^2\right)\)
SABM = \(\frac{AB\cdot BM}{2}=\frac{AB\cdot\frac{1}{2}BC}{2}=\frac{AB\cdot\frac{1}{2}AD}{2}=\frac{12\cdot\frac{1}{2}6}{2}=18\left(cm^2\right)\)
SMNC = \(\frac{MC\cdot NC}{2}=\frac{\frac{1}{2}BC\cdot\frac{1}{2}CD}{2}=\frac{\frac{1}{2}AD\cdot\frac{1}{2}AB}{2}=\frac{\frac{1}{2}6\cdot\frac{1}{2}12}{2}=9\left(cm^2\right)\)
SABCD = SADN + SABM + SMNC + SAMN
\(\Leftrightarrow\)SAMN = SABCD - SADN - SABM - SMNC
\(\Rightarrow\) SAMN = 72 - 18 - 18 - 9
= 27 (cm2)
dịch ra là thế này: Trong hình, ABCD là một hình bình hành, K là trung điểm của cạnh AD, AB = 2,5cm, BC = 5cm, CH = 4cm. diện tích của hình thang BCDK là gì?
rất tiếc em mới học lớp 7
Dịch thôi chứ ko bt làm:Diện tích tam giác ABC là 300. Trong tam giác ABC, Q là trung điểm BC, P là một điểm trên AC nằm giữa C và A sao cho CP = 3PA. R là một điểm trên cạnh AB sao cho diện tích của \(\Delta\)PQR gấp đôi diện tích của \(\Delta\)RBQ. Tìm diện tích của\(\Delta\) PQR
\(2^2+4^2+...+100^2-\left(1^2+3^2+...+99^2\right)\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...\left(100^2-99^2\right)\)
\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)
\(=1+2+3+...+100\)
\(=\frac{100.\left(100+1\right)}{2}=5050\left(cm^2\right)\)