K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

VT sẽ được phân tích thành 

\(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\left(3y+x\right)=33\)

Nếu x,y là các số nguyên =>VT là tích của 5 số nguyên, mà 33 chỉ là tích của nhiều nhất là 4 số nguyên => vô lí=> PT k có nghiệm nguyên 

^_^

7 tháng 1 2018

thanks chị nhiều ^_^

21 tháng 12 2020
Cmr nếu x,y là các số nguyên thì P nhận giá trị khác 33 . Mk ghi thiếu ạ!
22 tháng 11 2021

Answer:

\(3x^2.\left(2x^3-x+5\right)\)

\(=3x^2.2x^3+3x^2.(-x)+3x^2.5\)

\(=6x^5-3x^3+15x^2\)

\((4xy+3y-5x).x^2y\)

\(=4xy.x^2y+3y.x^2y-5x.x^2y\)

\(=4x^3+3x^2y^2-5x^3y\)

a: \(3x^2\left(2x^3-x+5\right)\)

\(=3x^2\cdot2x^3-3x^2\cdot x+5\cdot3x^2\)

\(=6x^5-3x^3+15x^2\)

b: \(x^2y\left(4xy+3y-5x\right)\)

\(=x^2y\cdot4xy+x^2y\cdot3y-x^2y\cdot5x\)

\(=4x^3y^2+3x^2y^2-5x^3y\)

30 tháng 6 2017

Bài 2 ; 

Ta có : x2 + 3x 

= x2 + 3x + \(\frac{9}{4}-\frac{9}{4}\)

\(x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà ; \(\left(x+\frac{3}{2}\right)^2\ge\forall x\)

Nên : \(\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\forall x\)

Vậy GTNN của B là : \(-\frac{9}{4}\) khi và chỉ khi x = \(-\frac{3}{2}\)

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

12 tháng 3 2022

a, bậc 6 

b, bậc 6 

c, bậc 12 

d, bậc 9 

e, bậc 8 

13 tháng 4 2022

huhu

28 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)

 

25 tháng 6 2021

\(a)\)

\(x^2=2y^2-8y+3\)

\(\rightarrow x^2=2\left(y^2+4y+4\right)-5\)

\(\rightarrow x^2+5=2\left(y+2\right)^2\)

\(\text{Ta có:}\)\(2\left(y+2\right)⋮2\)

\(\rightarrow\text{​Một số chính phương chia 5 có số dư là: 0; 1; 4}\)

\(\rightarrow2n^2⋮5\)\(\text{có số dư là: 0; 2; 3 }\)

\(\text{Ta có:}x^2+5⋮5\left(dư5\right)\)

\(\rightarrow\text{Phương trình không có nghiệm nguyên}\)

\(b)\)

\(x^5-5x^3+4x=24\left(5y+1\right)\)

\(\rightarrow x\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-2\right)=120y+24\)

\(\text{VT là tích của 5 số nguyện liên tiếp}⋮5\)

\(\text{VP không chia hết cho 5}\)

\(\rightarrow\text{Phương trình không có nghiệm nguyên }\)