cho đoạn thẳng AB có trung điểm O.Trên cùng 1 nửa mặt phẳng bờ AB kẻ 2 tia Ax,By cùng vuông góc với AB rồi lấy điểm C bất kì thuộc tia Ax vẽ D thuộc tia By sao cho góc COD =90 độ.Chứng minh
a) AC.BD=AB2/2
c) tam giác BOD đồng dạng với tam giác COD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Kẻ CO cắt BD tại E
Xét ΔOAC vuông tại A và ΔOBE vuông tại B có
OA=OB
góc COA=góc EOB
Do đó: ΔOAC=ΔOBE
=>OC=OE
Xét ΔDCE có
DO vừa là đường cao, vừalà trung tuyến
nên ΔDEC cân tại D
=>góc DCE=góc DEC=góc CAO
=>CO là phân giác của góc DCA
Kẻ CH vuông góc với CD
Xét ΔCAO vuông tại A và ΔCHO vuông tại H có
CO chung
góc ACO=góc HCO
DO đó: ΔCAO=ΔCHO
=>OA=OH=OB và CH=CA
Xét ΔOHD vuông tại H và ΔOBD vuông tại B có
OD chung
OH=OB
Do đó: ΔOHD=ΔOBD
=>DH=DB
=>AC+BD=CD
b: AC*BD=CH*HD=OH^2=R^2=AB^2/4
=>4*AC*BD=AB^2
a: Gọi giao điểm của CO với BD là K
Xét ΔOAC vuông tại A và ΔOBK vuông tại B có
OA=OB
\(\widehat{AOC}=\widehat{BOK}\)
Do đó: ΔOAC=ΔOBK
=>OC=OK và \(\widehat{ACO}=\widehat{BKO}\)
=>\(\widehat{ACO}=\widehat{DKC}\)(1)
OC=OK
K,O,C thẳng hàng
Do đó: O là trung điểm của KC
Xét ΔDCK có
DO là đường cao
DO là đường trung tuyến
Do đó: ΔDCK cân tại D
=>\(\widehat{DCK}=\widehat{DKC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{ACO}=\widehat{HCO}\)
Xét ΔCAO vuông tại A và ΔCHO vuông tại H có
CO chung
\(\widehat{ACO}=\widehat{HCO}\)
Do đó: ΔCAO=ΔCHO
=>OA=OH=R
=>H thuộc (O)
b: Xét (O) có
OH là bán kính
CD\(\perp\)OH tại H
Do đó: CD là tiếp tuyến của (O)