cho a,b,c là ba số nguyên khác 0 thỏa mãn \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=3\). chứng minh rằng tích abc là lập phương của một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có , vì: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=3\)
=> \(1=\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
=> \(a=b=c\)
=>\(abc=a^3\left(đpcm\right)\)
Đặt a/b=x^3, b/c=y^3,c/a=z^3 . Vì a,b,c khác 0 nên x,y,z khác 0.
Ta có x^3.y^3.z^3=a/b.b/c.c/a=1 => (xyz)^3=1 => xyz=1 => x^3 +y^3 +z^3 =3xyz <=> x^3+y^3+z^3-3xyz=0
=> (x+y)^3 + z^3 -3xy(x+y) - 3xyz =0 <=> (x+y+z)[(x+y)^2 -(x+y)z + z^2 ] -3xy(x+y+z) =0 =>(x+y+z)(x^2+y^2+z^2+2xy-3xy-xz-yz)=0
Vi x,y,z khác 0 nên x^2+y^2+z^2-xy-yz-xz=0 => 2x^2+2y^2+2z^2-2xy-2yz-2xz=0 => (x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)=0
<=> (x-y)^2+(y-z)^2+(x-z)^2=0 => x-y=0 ;y-z=0 ; x-z=0 => x=y=z => x^3=y^3=z^3 => a/b=b/c=c/a => a=b=c => abc=a^3=b^3=c^3
Vậy tích abc lập phương của 1 số nguyên
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow x+y+z=0\)
Ta có
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
=> ĐPCM
Ta có : \(P=3\sqrt{6}\sqrt{\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}}\) = \(3\sqrt{6}.Q\)
Thấy : \(a^2-b^2-c^2=\left(b+c\right)^2-b^2-c^2=2bc\) ( do a + b + c = 0 )
Suy ra : \(\frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{2bc}\) . CMTT : \(\frac{b^2}{b^2-c^2-a^2}=\frac{b^2}{2ac};\frac{c^2}{c^2-a^2-b^2}=\frac{c^2}{2ab}\)
Suy ra : \(Q=\sqrt{\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}}=\sqrt{\frac{a^3+b^3+c^3}{2abc}}=\sqrt{\frac{3abc}{2abc}}=\sqrt{\frac{3}{2}}\) ( vì a + b + c = 0 )
Khi đó : \(P=3\sqrt{6}.\sqrt{\frac{3}{2}}=9\) là 1 số nguyên
( Q.E.D)