cho hình thang ABCD AB//CD AB>CD O là giao điểm 2 đường chéo K là giao điểm AD và BC K, O cắt AB và CD theo thứ tự tại M và N CM:MA/ND=MB/NC, Ma/Nc MC/ ND
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Áp dụng Thales AB//DC\(\frac{\Rightarrow AK}{DK}=\frac{KB}{CK}\) (1)
AM//DN\(\frac{\Rightarrow AM}{ND}=\frac{AK}{DK}\). BM//NC\(\Rightarrow\frac{BM}{NC}=\frac{KB}{CK}\)(2)
Từ (1) và (2) suy ra ĐPCM
a) Vì ABCD là hình thang
=> AB//DC
Xét ΔDKN có AM//DN ( AB//DC )
=>\(\dfrac{AM}{DN}=\dfrac{KM}{KN}\) (1) (theo hệ quả ta lét )
Xét Δ NKC có BM//NC (AB//DC )
=>\(\dfrac{MB}{NC}=\dfrac{KM}{KN}\) (2) (theo hệ quả ta lét )
từ (1) và (2)
=>\(\dfrac{AM}{DN}=\dfrac{MB}{NC}\)(đpcm)
b)MB//DN(AB//DC )
=>\(\dfrac{MB}{ND}=\dfrac{MO}{NO}\) (3) (theo đl ta lét)
AM//NC
=>\(\dfrac{AM}{NC}=\dfrac{MO}{NO}\) (4) (theo đl ta lét)
từ (3) và (4)
=>\(\dfrac{AM}{NC}=\dfrac{BM}{ND}\) (đpcm)
c) ta có
\(\dfrac{MA}{ND}=\dfrac{MB}{NC}\) (theo a)
\(\dfrac{MA}{NC}=\dfrac{MB}{ND}\) (theo b)
=> MA=MB ,NC=ND (đpcm)
a: Xét ΔKND có AM//ND
nên KM/KN=AM/ND
Xét ΔKNC có MB//NC
nên MB/NC=KM/KN
=>AM/ND=KM/KN
b: Xét ΔMBO và ΔNDO có
góc MBO=góc NDO
góc MOB=góc NOD
Do đó: ΔMBO đồng dạng với ΔNDO
=>MB/ND=MO/NO
Xét ΔMAO và ΔNCO có
góc MAO=góc NCO
góc MOA=góc NOC
Do đó: ΔMAO đồng dạng với ΔNCO
=>MA/NC=MO/NO=MB/ND