K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2021

PT có 2 nghiệm phân biệt `<=> \Delta' >0`

`<=> (m-2)^2+m^2+4m>0`

`<=> 2m^2-4>0`

`<=> x< -2\sqrt2 ; \sqrt2 <x`

Viet: `x_1+x_2=2m-4`

`x_1x_2=-m^2-4m`

Theo đề: `x_1^3-x_2^3=(x_1-x_2)(x_1^2+x_1x_2+x_2^2)`

`=(x_1-x_2)[(x_1+x_2)^2 -x_1x_2]`

`=\sqrt((x_1+x_2)^2-4x_1x_2) [(x_1+x_2)^2-x_1x_2]`

`= \sqrt((2m-4)^2+4(m^2+4m)) [(2m-4)^2 +m^2+4m]`

`= \sqrt(8m^2 +16) (5m^2-12m+16)`

30 tháng 5 2021

bn có thể ghi rõ hơn ? oho

19 tháng 3 2023

\(2x^2-\left(4m+3x\right)x+2m^2-1=0\)

\(-x^2-4mx+2m^2-1=0\)

\(\Delta=\left(4m\right)^2+4\left(2m^2-1\right)=24m^2-4\)

Để phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\Leftrightarrow24m^2-4>0\Leftrightarrow m>\dfrac{1}{\sqrt{6}}\)

Vì phương trình có 2 nghiệm phân biệt, Áp dụng hệ thức Vi ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1.x_2=1-2m^2\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=6\)

\(\Rightarrow\left(x_1+x_2\right)^2-2\left(x_1.x_2\right)=6\)

\(\Leftrightarrow16m^2-2\left(1-2m^2\right)=6\)

\(\Leftrightarrow20m^2=8\)

\(\Leftrightarrow m^2=\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{\dfrac{2}{5}}\left(TM\right)\\m=-\sqrt{\dfrac{2}{5}}\left(\text{Loại vì m}>\dfrac{1}{\sqrt{6}}\right)\end{matrix}\right.\)

Vậy ...

17 tháng 3 2022

ê phải n.nam 9c ko

 

Δ=(-2)^2-4m=4-4m

Để phương trình có 2 nghiệm thì 4-4m>=0

=>4m<=4

=>m<=1

x1-x2=3

=>(x1-x2)^2=9

=>(x1+x2)^2-4x1x2=9

=>2^2-4m=9

=>4m=-5

=>m=-5/4(nhận)

5 tháng 4 2023

5x1+x2 thỏa mãn gì bạn nhỉ? Bạn bổ sung thêm đề nhé

5 tháng 4 2023

5x1+x2=0 bạn ạ 

a=1; b=-4; c=-m^2+3

Δ=(-4)^2-4*1*(-m^2+3)

=16+4m^2-12=4m^2+4>=4>0

=>Phương trình luôn có hai nghiệm phân biệt

5x1+x2=0 và x1+x2=4

=>4x1=-4 và x1+x2=4

=>x1=-1 và x2=5

x1x2=-m^2+3

=>-m^2+3=-5

=>m^2-3=5

=>m^2=8

=>\(m=\pm2\sqrt{2}\)

x1+x2=2m+2; x1x2=m^2+4

x1^2+2(m+1)x2<=2m^2+20

=>x1^2+x2(x1+x2)<=2m^2+20

=>x1^2+x2x1+x2^2<=2m^2+20

=>(x1+x2)^2-x1x2<=2m^2+20

=>(2m+2)^2-(m^2+4)<=2m^2+20

=>4m^2+8m+4-m^2-4-2m^2-20<=0

=>m^2-8m-20<=0

=>m<=-10 hoặc m>2

31 tháng 3 2023

\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)

Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)

Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)

\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)

\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)

\(\Leftrightarrow m^2+8m-16\le0\)

\(\Leftrightarrow-10\le m\le2\)

Kết hợp điều kiện....

 

=>(x1+x2)^2+x1x2=1

=>(-2m)^2+(-3)=1

=>4m^2=4

=>m=-1 hoặc m=1

25 tháng 5 2023

Do a = 1 và c = -3

⇒ a và c trái dấu

⇒ Phương trình luôn có hai nghiệm phân biệt

Theo Viét, ta có:

x₁ + x₂ = -2m

x₁x₂ = -3

Lại có:

x₁² + x₂² + 3x₁x₂ = 1

⇔ x₁² + 2x₁x₂ + x₂² + x₁x₂ = 1

⇔ (x₁ + x₂)² + x₁x₂ = 1

⇔ (-2m)² - 3 = 1

⇔ 4m² = 4

⇔ m² = 1

⇔ m = -1 hoặc m = 1

Vậy m = -1; m = 1 thì phương trình đã cho có hai nghiệm phân biệt x₁, x₂ thỏa mãn: x₁² + x₂² + 3x₁x₂ = 1

6 tháng 4 2023

Bạn viết vội hay gì mà chữ như rồng bay phượng múa thế :vv