K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a, => x^3 < 0 ; x-3 > 0 hoặc x^3 > 0 ; x-3 < 0

=> 0 < x < 3

b, => x^4.(2x-8) < 0

=> x^4.(x-4) < 0

Vì x^4 >= 0

=> x-4 < 0

=> x  < 4

c, Vì x-1 < x+12

=> x-1 < 0 ; x+12 >0

=> -12 < x < 1

d, => x-12 > 0 ; x-1 > 0 hoặc x-12 < 0 ; x-1 < 0

=> x  >12 hoặc x < 1

Tk mk nha

14 tháng 1 2018

Thank you so much

24 tháng 6 2016

(x^2+1)(x-1)(x+3)>0

Vì x^2+1>0 với mọi x

nên: (x-1)(x+3)>0

Trường hợp 1:

x-1<0, x+3 <0

Vì x+3 > x-1 nên x+3<0 suy ra x<-3

Trường hợp 2:

x-1>0, x+3>0

Vì x-1<x+3 nên x-1 >0 suy ra x>1

Vậy x<-3 hoặc x>1

24 tháng 6 2016

Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương

TH1: Có 2 số âm, 1 số dương

Trước hết ta có \(x+3>x-1\)

\(x^2+1>x-1\)

Vì vậy \(x-1< 0\)

\(x^2+1>0\) nên \(x+3< 0\)

\(\Rightarrow x< -3\left(< 1\right)\)

TH2: Cả 3 số đều dương

Xét số bé nhất lớn hơn 0:

\(x-1>0\Rightarrow x>1\)

Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

4 tháng 3 2018

(x;y)=(0;0);(2;2)

xy+3x-2y=11

\(\Rightarrow x.\left(y+3\right)-2.\left(y+3\right)=17\)

\(\Rightarrow\left(x-2\right).\left(y+3\right)=17\)

\(\Rightarrow17⋮x-2\)

\(\Rightarrow x-2\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

+)Ta có bảng:

x-2-11-77
y+3-77-11
x1\(\in Z\)3\(\in Z\)-5\(\in Z\)9\(\in Z\)
y-10\(\in Z\)4\(\in Z\)-4\(\in Z\)-2\(\in Z\)

Vậy \(\left(x,y\right)\in\left\{\left(1;-10\right);\left(3;4\right);\left(-5;-4\right);\left(9;-2\right)\right\}\)

Chúc bn học tốt

6 tháng 3 2020

Ban kia sai r ! vì trừ VT thì phải trừ VP chứ ? sao lại trừ VT mà cộng VP ?

\(xy+3x-2y=11\)

\(=>x.\left(y+3\right)-2.\left(y+3\right)=5\)

\(=>\left(x-2\right).\left(y+3\right)=5\)

\(Do:x;y\inℤ=>x-2;y+3\inℤ\)

\(=>x-2;y+3\inƯ\left(5\right)\)

Nên ta có bảng sau : 

x-215-1-5
y+351-5-1
x371-3
y2-2-8-4
14 tháng 1 2018

a)\(-17+\left|5-x\right|=10\)

\(\Leftrightarrow\left|5-x\right|=10-\left(-17\right)\)

\(\Leftrightarrow\left|5-x\right|=10+17\)

\(\Leftrightarrow\left|5-x\right|=27\)

\(\Leftrightarrow\orbr{\begin{cases}5-x=27\\5-x=-27\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-22\\x=32\end{cases}}\)

b) \(45-5\left|12-x\right|=125\div\left(-25\right)\)

\(\Leftrightarrow45-5\left|12-x\right|=-5\)

\(\Leftrightarrow5\left|12-x\right|=45-\left(-5\right)\)

\(\Leftrightarrow5\left|12-x\right|=45+5\)

\(\Leftrightarrow5\left|12-x\right|=50\)

\(\Leftrightarrow\left|12-x\right|=10\)

\(\Leftrightarrow\orbr{\begin{cases}12-x=10\\12-x=-10\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=22\end{cases}}\)

c) \(2< \left|3-x\right|\le5\)

\(\Leftrightarrow\left|3-x\right|\in\left\{3;4;5\right\}\)

\(\left|3-x\right|=3\Leftrightarrow\orbr{\begin{cases}3-x=3\\3-x=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)

\(\left|3-x\right|=4\Leftrightarrow\orbr{\begin{cases}3-x=4\\3-x=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}}\)

\(\left|3-x\right|=5\Leftrightarrow\orbr{\begin{cases}3-x=5\\3-x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)

d) \(\left|x+4\right|< 3\)

mà \(\left|x+4\right|\ge0\)

\(\Rightarrow\left|x+4\right|\in\left\{0;1;2\right\}\)

\(\left|x+4\right|=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(\left|x+4\right|=1\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}}\)

\(\left|x+4\right|=2\Leftrightarrow\orbr{\begin{cases}x+4=2\\x+4=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-6\end{cases}}}\)

14 tháng 1 2018

cảm ơn bạn nhiều nha