Giúp mình với các bạn ơi !
Tìm số nguyên x biết :
a) x^3(x-3)<0
b) -x^4 (2x-8)>0
c) (x-1).(x+12)<0
d) (x-12).(x-1)>0
Mình đang cần gấp. Sáng mai mình phải nộp rồi.Bạn nào làm nhanh nhất mình tick cho.
Cảm ơn các bạn nhiều !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2+1)(x-1)(x+3)>0
Vì x^2+1>0 với mọi x
nên: (x-1)(x+3)>0
Trường hợp 1:
x-1<0, x+3 <0
Vì x+3 > x-1 nên x+3<0 suy ra x<-3
Trường hợp 2:
x-1>0, x+3>0
Vì x-1<x+3 nên x-1 >0 suy ra x>1
Vậy x<-3 hoặc x>1
Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương
TH1: Có 2 số âm, 1 số dương
Trước hết ta có \(x+3>x-1\)
\(x^2+1>x-1\)
Vì vậy \(x-1< 0\)
\(x^2+1>0\) nên \(x+3< 0\)
\(\Rightarrow x< -3\left(< 1\right)\)
TH2: Cả 3 số đều dương
Xét số bé nhất lớn hơn 0:
\(x-1>0\Rightarrow x>1\)
Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1/ \(x^3+2=3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ
\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)
Lấy trên - dưới ta được
\(x^3-a^3+3x-3a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt[3]{3x-2}\)
\(\Leftrightarrow x^3-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
xy+3x-2y=11
\(\Rightarrow x.\left(y+3\right)-2.\left(y+3\right)=17\)
\(\Rightarrow\left(x-2\right).\left(y+3\right)=17\)
\(\Rightarrow17⋮x-2\)
\(\Rightarrow x-2\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
+)Ta có bảng:
x-2 | -1 | 1 | -7 | 7 |
y+3 | -7 | 7 | -1 | 1 |
x | 1\(\in Z\) | 3\(\in Z\) | -5\(\in Z\) | 9\(\in Z\) |
y | -10\(\in Z\) | 4\(\in Z\) | -4\(\in Z\) | -2\(\in Z\) |
Vậy \(\left(x,y\right)\in\left\{\left(1;-10\right);\left(3;4\right);\left(-5;-4\right);\left(9;-2\right)\right\}\)
Chúc bn học tốt
Ban kia sai r ! vì trừ VT thì phải trừ VP chứ ? sao lại trừ VT mà cộng VP ?
\(xy+3x-2y=11\)
\(=>x.\left(y+3\right)-2.\left(y+3\right)=5\)
\(=>\left(x-2\right).\left(y+3\right)=5\)
\(Do:x;y\inℤ=>x-2;y+3\inℤ\)
\(=>x-2;y+3\inƯ\left(5\right)\)
Nên ta có bảng sau :
x-2 | 1 | 5 | -1 | -5 |
y+3 | 5 | 1 | -5 | -1 |
x | 3 | 7 | 1 | -3 |
y | 2 | -2 | -8 | -4 |
a)\(-17+\left|5-x\right|=10\)
\(\Leftrightarrow\left|5-x\right|=10-\left(-17\right)\)
\(\Leftrightarrow\left|5-x\right|=10+17\)
\(\Leftrightarrow\left|5-x\right|=27\)
\(\Leftrightarrow\orbr{\begin{cases}5-x=27\\5-x=-27\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-22\\x=32\end{cases}}\)
b) \(45-5\left|12-x\right|=125\div\left(-25\right)\)
\(\Leftrightarrow45-5\left|12-x\right|=-5\)
\(\Leftrightarrow5\left|12-x\right|=45-\left(-5\right)\)
\(\Leftrightarrow5\left|12-x\right|=45+5\)
\(\Leftrightarrow5\left|12-x\right|=50\)
\(\Leftrightarrow\left|12-x\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}12-x=10\\12-x=-10\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=22\end{cases}}\)
c) \(2< \left|3-x\right|\le5\)
\(\Leftrightarrow\left|3-x\right|\in\left\{3;4;5\right\}\)
* \(\left|3-x\right|=3\Leftrightarrow\orbr{\begin{cases}3-x=3\\3-x=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
* \(\left|3-x\right|=4\Leftrightarrow\orbr{\begin{cases}3-x=4\\3-x=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}}\)
* \(\left|3-x\right|=5\Leftrightarrow\orbr{\begin{cases}3-x=5\\3-x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
d) \(\left|x+4\right|< 3\)
mà \(\left|x+4\right|\ge0\)
\(\Rightarrow\left|x+4\right|\in\left\{0;1;2\right\}\)
* \(\left|x+4\right|=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
* \(\left|x+4\right|=1\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}}\)
* \(\left|x+4\right|=2\Leftrightarrow\orbr{\begin{cases}x+4=2\\x+4=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-6\end{cases}}}\)
a, => x^3 < 0 ; x-3 > 0 hoặc x^3 > 0 ; x-3 < 0
=> 0 < x < 3
b, => x^4.(2x-8) < 0
=> x^4.(x-4) < 0
Vì x^4 >= 0
=> x-4 < 0
=> x < 4
c, Vì x-1 < x+12
=> x-1 < 0 ; x+12 >0
=> -12 < x < 1
d, => x-12 > 0 ; x-1 > 0 hoặc x-12 < 0 ; x-1 < 0
=> x >12 hoặc x < 1
Tk mk nha
Thank you so much