K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

Suy ra: BC=DE

1 tháng 10 2021

Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = BC b) DE vuông góc với BC

 

3 tháng 12 2018

A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :

AB=AD

AC=AE

=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông ) 

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE
 

21 tháng 2 2021

Đáp án:

a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)

=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)

=> BC2=82+62=100BC2=82+62=100

=> BC=10BC=10cm

b) Vì AB = AD (gt)

mà A  BD (gt)

=> A trung điểm BD (ĐN trung điểm)

=> CA trung tuyến BD (ĐN trung tuyến)

lại có: CA  BD (AB  AC do Aˆ=90oA^=90o)

=> ΔΔCBD cân tại C (dhnb)

=> BC = CD (ĐN ΔΔ cân)

và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)

=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)

Xét ΔΔBEC và ΔΔDEC có:

BC = CD (cmt)

C1ˆ=C2ˆC1^=C2^ (cmt)

EC: cạnh chung

=> ΔΔBEC = ΔΔDEC (c.g.c)

c) Vì CE là trung tuyến của ΔΔBCD (cmt)

mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)

=> E là trọng tâm ΔΔBCD (dhnb)

=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)

 

=> DE đi qua trung điểm của BC (ĐN trung tuyến)

31 tháng 12 2020

giúp em với mọi người ơi

 

1 tháng 12 2016

 

ABCDEN

\(a.\)

Xét \(\Delta ADE\)\(\Delta ABC\) có :

\(AD=AB\) \(\left(gt\right)\)

\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)

\(AE=AC\) \(\left(gt\right)\)

Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)

\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )

\(b.\)

Ta có :

\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )

\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )

\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)

Hay \(DE\perp BC\)

Vậy \(DE\perp BC\)

 

 

12 tháng 12 2016

còn phần c

14 tháng 1 2017

a) Tam giác ABC = tam giác DAE (2 cạnh góc vuông)  (1) 

(AB = AD ; BAC^ = DAE^ = 90o; AC=AE)

=> BC = DE (2 cạnh t/ứng)

b) DE giao BC = H

(1) => C^ = E^ 

Mà B^ + C^ = 90o => B^ + E^ = 90o => tam giác BHE vuông tại H hay DE _|_ BC

c) tam giác EAC vuông cân tại A  (A^ = 90o ; AE=AC)

=> AEC^ = 45o

(câu c hơi lạ, nếu tính AEC^ thì sao lại cho 4B^ = 5C^ . Có phải là tính AED^ ko???)

14 tháng 1 2017

a) Vì góc BAC và góc EAD là hai góc kề bù

nên <BAC + <EAD = 180* ( tính chất hai góc kề bù )

hay 90* + <EAD = 180*

               <EAD = 180* - 90*

               <EAD = 90*

Xét Tam giác ABC và Tam giác ADE có :

    AB = AD (GT)

   <BAC = <EAD ( = 90* )

   AC = AE(GT)

=> Tam giác ABC = Tam giác ADE ( c.g.c )

=> BC = DE (dpcm)

b) Gọi giao điểm của tia ED và tia BC là G

Vì Tam giác ABC = Tam giác ADE (cmt)

=> <C = <E  (1)

Xét Tam giác ABC có :

<B + <A + <C = 180*       (2)

Xét Tam giác BEG có :

<B + <E + <G = 180*       (3)

TC : <B chung         (4)

Từ (10 ; (2) ; (3) và (4)

=> <A = <G

mà <A = 90*

Nên <G =90*

=> DE vuông góc BC (dpcm)

c) Xét Tam giác ABC có :

<A + <B + <C =180* 

hay 90* + <B + <C = 180*

      <B + <C = 180* - 90*

     <B +<C = 90*

Theo đề bài ta có :

<B x 4 = <C x 5 

=> <B/5 = <C/4

AD tính chất dãy tỉ số bằng nhau ta được :

<B/5 = <C/4 = <B + <C/5+4 = 90*/9 =10*

Từ <B/5 = 10* => <B = 10* x 5 = 50* 

Từ <C/4 = 10* => <C = 10* x 4 = 40*

Xét Tam giác BEG có :

<B + <G + <BEC = 180* 

hay 50* + 90* + <BEC = 180*

                       <BEC = 180* -50* -90*

                       <BEC = 40*

               hay  <AEC = 40*

Vậy , <AEC = 40*