Cho a, b, c lần lượt là độ dài 3 cạnh của một tam giác thỏa mãn 2ab + 3bc + 4ca = 5abc.
Tìm GTNN : \(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{a+c-b}\)
Theo mình nghĩ thì bài này áp dụng cosi \(\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{x+y}\)
\(2ab+3bc+4ca=5abc\)
Do a,b,c lần lượt là độ dài 3 cạnh của tam giác
\(\Rightarrow\frac{2ab}{abc}+\frac{3bc}{abc}+\frac{4ca}{abc}=\frac{5abc}{abc}\Rightarrow\frac{2}{c}+\frac{3}{a}+\frac{4}{b}=5\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y >0 (Dấu "=" xảy ra khi x=y)
Ta có: \(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{a+c-b}\)
\(=\left(\frac{2}{b+c-a}+\frac{2}{c+a-b}\right)+\left(\frac{3}{c+a-b}+\frac{3}{a+b-c}\right)+\left(\frac{4}{a+b-c}+\frac{4}{b+c-a}\right)\)
\(=2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\)
\(\ge\frac{8}{2c}+\frac{12}{2a}+\frac{16}{2b}=2\left(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}\right)=10\)
Vậy ...