a,1+1/2+1/4+1/8+1/16+1/32+1/64+1/128
b,1/3*5+1/5*7+1/7*9+.....+1/19*21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 19 + (29 - 9*37) - (63*9 - 29*99)
= 19 + 29 - 9*37 - 63*9 + 29*99
= 19 + 29(1 + 99) - 9(37 + 63)
= 19 + 29*100 - 9*100
= 19 + 100(29 - 9)
= 19 + 100*20
= 19 + 2000 = 2019
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
= \(\frac{2^6+2^5+2^4+2^3+2^2+2+1}{2^7}\)
= \(\frac{64+32+16+8+4+2+1}{128}\) = \(\frac{127}{128}\)
a) \(\left|x\right|-\frac{7}{6}=\frac{9}{15}\)
=> \(\left|x\right|=\frac{9}{15}+\frac{7}{6}=\frac{53}{30}\)
=> \(\orbr{\begin{cases}x=\frac{53}{30}\\x=-\frac{53}{30}\end{cases}}\)
b) \(\left|x-\frac{4}{3}\right|=\frac{1}{6}\)
=> \(\orbr{\begin{cases}x-\frac{4}{3}=\frac{1}{6}\\x-\frac{4}{3}=-\frac{1}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{7}{6}\end{cases}}\)
c) \(\left|x-\frac{4}{3}\right|-\frac{1}{3}=\frac{1}{2}\)
=> \(\left|x-\frac{4}{3}\right|=\frac{1}{2}+\frac{1}{3}\)
=> \(\left|x-\frac{4}{3}\right|=\frac{5}{6}\)
=> \(\orbr{\begin{cases}x-\frac{4}{3}=\frac{5}{6}\\x-\frac{4}{3}=-\frac{5}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{6}\\x=\frac{1}{2}\end{cases}}\)
d) \(\frac{8}{3}-\left|\frac{7}{9}-x\right|=-\frac{1}{5}\)
=> \(\left|\frac{7}{9}-x\right|=\frac{43}{15}\)
=> \(\orbr{\begin{cases}\frac{7}{9}-x=\frac{43}{15}\\\frac{7}{9}-x=-\frac{43}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{94}{45}\\x=\frac{164}{45}\end{cases}}\)
e) \(\left|x-\left(\frac{1}{4}\right)^2\right|-\frac{25}{64}=0\)
=> \(\left|x-\frac{1}{16}\right|=\frac{25}{64}\)
=> \(\orbr{\begin{cases}x-\frac{1}{16}=\frac{25}{64}\\x-\frac{1}{16}=-\frac{25}{64}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{29}{64}\\x=-\frac{21}{64}\end{cases}}\)
f) \(\left(x-\frac{1}{4}\right)^2+\frac{17}{64}=\frac{21}{32}\)
=> \(\left(x-\frac{1}{4}\right)^2=\frac{25}{64}\)
=> \(\left(x-\frac{1}{4}\right)^2=\left(\frac{5}{8}\right)^2\)
=> \(\orbr{\begin{cases}x-\frac{1}{4}=\frac{5}{8}\\x-\frac{1}{4}=-\frac{5}{8}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{3}{8}\end{cases}}\)
`@` `\text {Ans}`
`\downarrow`
`1)`
`5/7*37 13/23 - 51 13/23*5/7`
`= 5/7* (37 13/23 - 51 13/23)`
`= 5/7* (-14)`
`= -10`
`2)`
`-2/3 +1/3+0,5+2 1/2`
`= -2/3 + 1/3 + 1/2 + 5/2`
`= (-2/3+1/3) + (1/2+5/2)`
`= -1/3 + 3`
`=8/3`
`3)`
`-0,5+2/3+1/2`
`= -1/2 + 2/3 + 1/2`
`= (-1/2 + 1/2) + 2/3`
`= 2/3`
`4)`
`(8+2 1/3-3/5) -(5+0,4)-(3 1/2 -2)`
`= 8+ 7/3 - 3/5 - 5 - 0,4 - 7/2 + 2`
`= (8+2-5) + (-3/5 - 2/5) + (7/3 - 7/2)`
`= 5 - 1 - 7/6`
`= 4 - 7/6 = 17/6`
`5)`
`(2/9-7/12):3/4+(16/9-5/12):3/4`
`= (2/9 - 7/12) \times 4/3 + (16/9 - 5/12) \times 4/3`
`= 4/3 *(2/9 - 7/12 + 16/9 - 5/12)`
`= 4/3 * [(2/9 + 16/9) + (-7/12 - 5/12)]`
`= 4/3 * ( 2 - 1)`
`= 4/3 * 1 = 4/3`
`6)`
`-(2021.0,7+19,75) +0,7- (8-19,75)`
`= -2021*0,7 -19,75 + 0,7 - 8 + 19,75`
`= 0,7*(-2021 + 1) - 8`
`= -1414-8`
`= -1422`
`7)`
`15/34+7/21+19/34-20/15`
`= (15/34 + 19/34) + 7/21 - 20/15`
`= 1 + 7/21 - 20/15`
`= 4/3 - 20/15 =0`
`8)`
`2 5/6+1/6:(-5/8)`
`= 17/6 + (-4/15)`
`= 77/30`
`9)`
`(-2)^2 +2/9. (4/5-2/3)`
`= 4 + 2/9*2/15`
`= 4+4/135`
`= 544/135`
`10)`
`(-1/5+3/7):5/4+(-4/5+4/7):5/4`
`= (-1/5+3/7) * 4/5 + (-4/5+4/7) * 4/5`
`= 4/5*(-1/5 +3/7-4/5+4/7)`
`= 4/5*[(-1/5-4/5)+(3/7+4/7)]`
`= 4/5* (-1+1)`
`= 4/5*0=0`
`11)`
`2022,2021 . 1954,1945+ 2022,2021 . (-1954,1945)`
`= 2022,2021 * [1954,1945 + (-1954,1945)]`
`= 2022,2021*0 `
`= 0`
`12)`
`-5,2 .72 +69,1 +5,2 . (-28)+(-1,1)`
`= -5,2*72 + 69,1 - 5,2*28 - 1,1`
`= -5,2*(72+28) + (69,1 - 1,1)`
`= -5,2*100 + 68`
`= -520 + 68`
`= -452`
`13)`
`(7 -1/2-3/4) : (5-1/4-5/8)`
`= 23/4 \div 33/8`
`=46/33`
`14)`
`(8+ 2 1/3 -3/5) -(5+0,4) -( 3 1/3 - 2)`
`= 8+ 2 1/3 - 3/5 - 5 - 0,4 - 3 1/3 + 2`
`= (8+2-5) + (2 1/3 - 3 1/3) - (0,6 + 0,4) `
`= 5 - 1 - 1`
`= 3`
a.\(\dfrac{27}{8}\)
b.\(\dfrac{37}{40}\)
c.\(\dfrac{5}{2}\)
d.\(\dfrac{7}{3}\)
e.5
g.\(\dfrac{53}{16}\)
Bài 1 :
a) \(\dfrac{3}{2}+\dfrac{5}{4}+\dfrac{5}{8}=\dfrac{12}{8}+\dfrac{10}{8}+\dfrac{5}{8}=\dfrac{12+10+5}{8}=\dfrac{27}{8}\)
b) \(\dfrac{4}{5}-\dfrac{3}{8}+\dfrac{2}{4}=\dfrac{32}{40}-\dfrac{15}{40}+\dfrac{20}{40}=\dfrac{32-15+20}{40}=\dfrac{37}{40}\)
c) \(3+\dfrac{6}{8}-\dfrac{5}{4}=\dfrac{3}{1}+\dfrac{6}{8}-\dfrac{5}{4}=\dfrac{24}{8}+\dfrac{6}{8}-\dfrac{10}{8}=\dfrac{20}{8}=\dfrac{5}{2}\)
d) \(\dfrac{5}{6}-\dfrac{1}{2}+2=\dfrac{5}{6}-\dfrac{1}{2}+\dfrac{2}{1}=\dfrac{5}{6}-\dfrac{3}{6}+\dfrac{12}{6}=\dfrac{14}{6}=\dfrac{7}{3}\)
e) \(\dfrac{3}{5}+\dfrac{6}{11}+\dfrac{7}{13}+\dfrac{2}{5}+\dfrac{16}{11}+\dfrac{19}{13}=\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+\left(\dfrac{6}{11}+\dfrac{16}{11}\right)+\left(\dfrac{7}{13}+\dfrac{19}{13}\right)=1+2+2=5\)
g) \(\dfrac{75}{100}+\dfrac{18}{21}+\dfrac{29}{32}+\dfrac{1}{4}+\dfrac{3}{21}+\dfrac{13}{32}=\dfrac{3}{4}+\dfrac{6}{7}+\dfrac{29}{32}+\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{13}{32}=\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{6}{7}+\dfrac{1}{7}\right)+\left(\dfrac{29}{32}+\dfrac{13}{32}\right)=1+1+\dfrac{21}{16}=2+\dfrac{21}{16}=\dfrac{53}{16}\)
a) \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Rightarrow\)\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)
\(\Rightarrow\)\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)
\(\Leftrightarrow\)\(A=2-\frac{1}{2^7}=\frac{255}{128}\)
b) \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{2}{7}=\frac{1}{7}\)