Bài 4: so sánh
a) (-2).(-3).(-4).x với 0
b) 5.(-7).(-x) với 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 7 . 10 > 0
b. 123 . 8 > 12 . 31
c. 15 . 28 < 22 . 27
d. 17 . 3 > 23 . 2
HT nha^^
7.0 > 0 123.8 > 12.31 15.28 < 22.27 17. > 23.2
a) \(\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\)
\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{\left(y^2\right)^2}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)
\(=\dfrac{1}{y}\)
b) \(\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{\left(x^2y^4\right)^2}}\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{4}{x^2y^4}\)
\(=\dfrac{20x^3y^3}{2x^2y^4}\)
\(=\dfrac{10x}{y}\)
c) \(ab^2\sqrt{\dfrac{3}{a^2b^4}}\)
\(=ab^2\dfrac{\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)
\(=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)
\(=\sqrt{3}\)
\(a,\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\left(y\ge0;x,y\ne0\right)\) (sửa đề)
\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{y^4}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{\sqrt{\left(y^2\right)^2}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)
\(=\dfrac{1}{y}\)
\(---\)
\(b,\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\left(x,y\ne0\right)\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{x^4y^8}}\)
\(=\dfrac{5x^3y^3}{2}\cdot\dfrac{4}{x^2y^4}\)
\(=\dfrac{5x\cdot2}{y}\)
\(=\dfrac{10x}{y}\)
\(---\)
\(c,ab^2\sqrt{\dfrac{3}{a^2b^4}}\left(a>0;b\ne0\right)\) (sửa đề)
\(=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}\)
\(=\dfrac{ab^2\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)
\(=\dfrac{ab^2\sqrt{3}}{ab^2}\)
\(=\sqrt{3}\)
#\(Toru\)
\((2x-1)^2+(x+3)^2-5(x+7)(x-7)=0\)
\(< =>4x^2-4x+1+x^2+6x+9-5\left(x^2-7^2\right)=0\\ < =>4x^2-4x+1+x^2+6x+9-5x^2+245=0\\ < =>2x+255=0\\ < =>2x=-255=>x=\dfrac{-255}{2}\)
Vậy \(x=\dfrac{-255}{2}\)
\(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x+255=0\Rightarrow2x=-255\Rightarrow x=-\dfrac{255}{2}\)
Bài 1: Tìm x
a) (x-5) (x-3)+ 2(x-5)=0
b) (x-2)(x^2+2x+4)-(x+2)(x^2-2x+4)=2(x+2)
giúp e với ạ, e cảm ơn
a) (x - 5)(x - 3) + 2(x - 5) = 0
(x - 5)(x - 3 + 2) = 0
(x - 5)(x - 1) = 0
x - 5 = 0 hoặc x - 1 = 0
*) x - 5 = 0
x = 5
*) x - 1 = 0
x = 1
Vậy x = 1; x = 5
b) (x - 2)(x² + 2x + 4) - (x + 2)(x² - 2x + 4) = 2(x + 2)
x³ - 8 - x³ - 8 = 2x + 4
2x = -8 - 8 - 4
2x = -20
x = -20 : 2
x = -10
a)
\(\left(x-5\right)\left(x-3\right)+2\left(x-5\right)=0\)
\(\left(x-5\right)\left(x-3+2\right)=0\)
\(\left(x-5\right)\left(x-1\right)=0\)
\(x-5=0\) hoặc \(x-1=0\)
+) \(x-5=0\\ \Rightarrow x=5\)
+) \(x-1=0\\ \Rightarrow x=1\)
Vậy \(x=1\) hoặc \(x=5\)
b) \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)=2\left(x+2\right)\)
\(x^3-8-x^3-8=2x+4\)
\(2x=-8-8-4\)
\(2x=-20\)
\(x=-20:2\)
\(x=-10\)
Vậy \(x=-10\)
a, (-2).(-3).(-4).x = -12x
+, Nếu x=0 => -12x = 0
+, Nếu x > 0 => -12x < 0
+, Nếu x < 0 => -12x > 0
b, 5.(-7).(-x) = 35x
+, Nếu x=0 => 35x=0
+, Nếu x > 0 => 35x > 0
+, Nếu x < 0 => 35x < 0
Tk mk nha