K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

A B C M

ta có: AM = 1/2 BC => AM = BM, CM

xét tam giác ABM có : AM = BM

=> ABM cân tại M

xét tam giác ACM có : AM = CM

=> ACM cân tại M

Mà góc AMB + AMC = 180 độ ( kề bù )

=> góc B + góc BAM + góc C + góc CAM = 180 độ

Mà góc B = góc BAM

     góc C = góc CAM

=> BAM + CAM = 90 độ

=> tam giác ABC cân tại A

a: OM//AH

ON//BH

MN//AB

=>góc BAH=góc OMN và góc ABH=góc ONM

=>ΔABH đồng dạng với ΔMNO

b: A,G,M thẳng hàng và H,G,O thẳng hàng

=>góc AGH=góc MGO

=>ΔAHG đồng dạng với ΔMOG

=>OM/AH=MG/AG

=>OM/AH=MN/AB=1/2

=>GM/GA=1/2

=>G là trọng tâm của ΔACB

a) Xét ΔACN và ΔDBN có 

NA=ND(gt)

\(\widehat{ANC}=\widehat{DNB}\)(hai góc đối đỉnh)

NC=NB(N là trung điểm của BC)

Do đó: ΔACN=ΔDBN(c-g-c)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Ta có: ΔACN=ΔDBN(cmt)

nên AC=DB(hai cạnh tương ứng)

mà AC=4cm(cmt)

nên BD=4cm

Vậy: BD=4cm

4 tháng 2 2023

Diện tích AMN bằng 1/2 diện tích ABM (chung đường cao hạ từ M xuống BC, đáy AN = 1/2 AB)

Lại có, Diện tích AMN 1/2 diện tích ABC (chung đường cao hạ từ A xuống BC, đáy BM = 1/2 BC)

=> Diện tích AMN bằng 1/4 diện tích ABC

=> Diện tích ABC là 36 cm2.

Chúc em học tốt!

29 tháng 5 2023

a: O là giao điểm của 3 đường trung trực của ΔABC

=>O là tâm đường tròn ngoại tiếp ΔABC

=>AM là đường kính của (O)

Xét (O) có

ΔABM nội tiếp đường tròn

AM là đường kính

=>ΔABM vuông tại B

=>BM vuông góc AB

=>BM//CH

Xét (O) có

ΔACM nội tiếp

AM là đường kính

=>ΔAMC vuông tại C

=>AC vuông góc CM

=>CM//BH

Xét tứ giác BHCM có

BH//CM

BM//CH

=>BHCM là hình bình hành

=>BC cắt HM tại trung điểm của mỗi đường

=>I là trung điểm của HM

b: Xét ΔMAH có

O,I lần lượt là trung điểm của MA,MH

=>OI là đường trung bình

=>OI//AH và OI=1/2AH

=>AH=2OI

AH
Akai Haruma
Giáo viên
21 tháng 10 2021

Thiếu yêu cầu đề bài. Bạn coi lại đề. 

21 tháng 10 2021

 

a. Chứng minh tứ giác BHCD là hình bình hành

b. Chứng minh các tam giác ABD vuông tại B, ACD vuông tại C

31 tháng 8 2021

Bài 1 : a) M là trung điểm AB 

                N là trung điểm AC 

         suy ra : MN là Đường trung bình của tam giác ABC 

         suy ra : MN // BC ; MN = BC/2

b) Ta có : MN // BC và M là trung điểm AB 

    Mà AD cắt MN tại I nên từ đó suy ra : I là trung điểm của cạnh AD 

em chỉ giải được bài 1 thôi nên thông cảm ạ