K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

a.có C;E ∈ (O;\(\dfrac{AB}{2}\)

⇒ΔACB vuông tại C; ΔAEB vuông tại E

⇒∠FCD=90; ∠FED=90

⇒∠FCD+∠FED=90+90=180

⇒tứ giác FCDE nội tiếp

b.xét ΔACD và ΔBED

∠CAD=∠EDB (so le)

∠ACD=∠DEB=90

⇒ΔACD∼ΔBED

\(\dfrac{AD}{BD}=\dfrac{CD}{ED}\)⇒AD.ED=BD.CD

 

31 tháng 5 2021

Giỏi quá nhưng cách bạn làm hơi khó hỉu

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

Xét tứ giác FCDE có 

\(\widehat{FCD}+\widehat{FED}=180^0\)

Do đó: FCDE là tứ giác nội tiếp

b: Xét ΔACD vuông tại C và ΔBED vuông tại E có 

\(\widehat{CDA}=\widehat{EDB}\)

Do đó: ΔACD\(\sim\)ΔBED

Suy ra: DA/DB=DC/DE

hay \(DA\cdot DE=DB\cdot DC\)

a: góc ACB=1/2*sđ cung AB=90 độ

=>góc FCD=90 độ

góc AEB=1/2*sđ cung AB=90 độ

=>góc FED=90 độ

=>góc FCD+góc FED=180 độ

=>FCDE nội tiếp

b: Xét ΔCAD vuông tại C và ΔCBF vuông tại C có

góc CAD=góc CBF

=>ΔCAD đồng dạng với ΔCBF

=>CA/CB=CD/CF
=>CA*CF=CB*CD

 

a: góc ACB=1/2*sđ cung AB=90 độ

=>góc FCD=90 độ

góc AEB=1/2*sđ cung AB=90 độ

=>góc FED=90 độ

=>góc FCD+góc FED=180 độ

=>FCDE nội tiếp

b: Xét ΔCAD vuông tại C và ΔCBF vuông tại C có

góc CAD=góc CBF

=>ΔCAD đồng dạng với ΔCBF

=>CA/CB=CD/CF
=>CA*CF=CB*CD

1:

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó:ΔACB vuông tại C

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

Xét tứ giác FCDE có 

\(\widehat{FCD}+\widehat{FED}=180^0\)

Do đó: FCDE là tứ giác nội tiếp

2: Xét ΔCDA vuông tại C và ΔEDB vuông tại E có 

\(\widehat{CDA}=\widehat{EDB}\)

Do đó: ΔCDA\(\sim\)ΔEDB

Suy ra: DC/DE=DA/DB

hay \(DA\cdot DE=DB\cdot DC\)

a: góc ACB=góc AEB=1/2*180=90  độ

=>CB vuông góc FA,AE vuông góc FB

góc FCD+góc FED=180 độ

=>FCDE nội tiếp

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

góc CDA=góc EDB

=>ΔDCA đồng dạng với ΔDEB

=>DC/DE=DA/DB

=>DA*DE=DB*DC

17 tháng 4 2023

a: góc ACB=góc AEB=1/2*180=90 độ

=>CB vuông góc FA,AE vuông góc FB

góc FCD+góc FED=180 độ

=>FCDE nội tiếp

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

góc CDA=góc EDB

=>ΔDCA đồng dạng với ΔDEB

=>DC/DE=DA/DB

=>DA*DE=DB*DC

17 tháng 4 2023

a: góc ACB=góc AEB=1/2*180=90 độ

 

=>CB vuông góc FA,AE vuông góc FB

 

góc FCD+góc FED=180 độ

 

=>FCDE nội tiếp

 

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

 

góc CDA=góc EDB

 

=>ΔDCA đồng dạng với ΔDEB

 

=>DC/DE=DA/DB

 

=>DA*DE=DB*DC

https://hoidap247.com/cau-hoi/296770 cậu vào link này xem bài tham khảo rồi tự làm hộ mk nha, mk bận quá nên k có thời gian giải cả bài ra chi tiết cho Vy đc, thông cảm giùm mk với ạ, thanks ^6 

17 tháng 4 2023

a: góc ACB=góc AEB=1/2*180=90 độ

 

=>CB vuông góc FA,AE vuông góc FB

 

góc FCD+góc FED=180 độ

 

=>FCDE nội tiếp

 

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

 

góc CDA=góc EDB

 

=>ΔDCA đồng dạng với ΔDEB

 

=>DC/DE=DA/DB

 

=>DA*DE=DB*DC

23 tháng 5 2018

a, ta có góc FCD=90°; FED=90°( góc nội tiếp chắn 1/2 đtròn )

xét tứ giác FCDE có góc FCD+FED=90°+90°=180°

suy ra FCDE nội tiếp

b,xét hai tam giác CED và ABD có

góc CDE=ADB( đđ )

góc ECD=DAB=1/2sđ cung EB( góc nội tiếp chắn cung EB)

suy ra hai tam giác đó đồng dạng

suy ra DE/DB=DC/AD

suy ra DE.DA=DB.DC(đpcm)

c, ta có góc CDF=CEF( góc nội tiếp cùng chắn cung CF)(1)

góc CED=CBA( góc nội tiếp chắn cung CA)(2)

góc CDF=DCI( tam giác CID cân tại I)(3)

góc OCB=CBO( tam giác OCB cân tại O)(4)

từ 1,3 suy ra góc CEF=DCI(5)

từ2,4 suy ra OCB=CEA(6)

mà góc CEF+CEA=90°(7)

từ 5,6,7 suy ra góc DCI+OCB=90°

suy ra CI là tiếp tuyến của (O)(đpcm)

17 tháng 4 2023

a: góc ACB=góc AEB=1/2*180=90 độ

 

=>CB vuông góc FA,AE vuông góc FB

 

góc FCD+góc FED=180 độ

 

=>FCDE nội tiếp

 

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

 

góc CDA=góc EDB

 

=>ΔDCA đồng dạng với ΔDEB

 

=>DC/DE=DA/DB

 

=>DA*DE=DB*DC