a,b,c là độ dài 3 cạnh của 1 tam giác chu vi bằng 1 cmr
\(\frac{b+c-a}{a^2+bc}+\frac{c+a-b}{b^2+ca}+\frac{a+b-c}{c^2+ab}>4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)
Đặt \(x=b+c-a>0\)
\(y=a+c-b>0\)
\(z=a+b-c>0\)
\(\Rightarrow a=\frac{"y+z"}{2}\)
\(\Rightarrow b=\frac{"x+z"}{2}\)
\(\Rightarrow c=\frac{"x+y"}{2}\)
\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)
\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)
\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)
Áp dụng công thức bdt Cauchy cho 2 số :
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng 3 bdt trên, suy ra :
\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"
P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé
\(\frac{2\left(Σab\right)}{Σa^2}\le\frac{2\left(Σa^2\right)}{a^2}=2\)
tuc la can cm \(Σ\frac{a}{b+c}\le\frac{7}{2}-2=\frac{3}{2}\)
Nguoc dau voi BDT Nesbitt
vay BDT sai ko xay ra dau = maybe :3
Bất đẳng thức này mà ko loạn dấu thì tự làm đc r. Nhưng vế trước>=3/2, vế sau<=2 quá loạn dấu
\(\frac{b^2+c^2-a^2}{bc}+\frac{c^2+a^2-b^2}{ac}+\frac{a^2+b^2-c^2}{ab}\)
\(=\frac{b^2+\left(c-a\right)\left(c+a\right)}{bc}+\frac{c^2+\left(a-b\right)\left(a+b\right)}{ac}+\frac{a^2+\left(b-c\right)\left(b+c\right)}{ab}\)
\(>\frac{b^2+\left(c-a\right).b}{bc}+\frac{c^2+\left(a-b\right).c}{ac}+\frac{a^2+\left(b-c\right).a}{ab}\)(BĐT tam giác)
\(=\frac{b+c-a}{c}+\frac{c+a-b}{a}+\frac{a+b-c}{b}\)
rồi sao đứng bánh r
Giải bằng lập luận tương đương nhá
Ta có: \(A=\frac{b^2+c^2+2bc-a^2}{bc}+\frac{c^2+a^2-2ca-b^2}{ac}+\frac{a^2+b^2-2ab-c^2}{ab}>0\)
\(\Leftrightarrow A=\frac{\left(b+c\right)^2-a^2}{bc}+\frac{\left(c-a\right)^2-b^2}{ac}+\frac{\left(a-b\right)^2-c^2}{ab}>0\)
\(\Leftrightarrow A=\frac{\left(b+c-a\right)\left(a+b+c\right)}{bc}+\frac{\left(c-a-b\right)\left(b+c-a\right)}{ac}+\frac{\left(a-b-c\right)\left(a+c-b\right)}{ab}>0\)
cmđ cái phân số đầu >0
2p/s sau quy đồng, lấy nhân tử chung là b+c-a là ra
Đặt a+b-c=x
b+c-a=y
c+a-b=z
\(A=\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ca}{c+a-b}\)
Ta có a;b;c là độ dài 3 cạnh tam giác nên x;y;z>0
\(4A=\frac{2a.2b}{x}+\frac{2b.2c}{y}+\frac{2c.2a}{z}\)
\(=\frac{\left(x+z\right)\left(x+y\right)}{x}+\frac{\left(x+y\right)\left(y+z\right)}{y}+\frac{\left(x+z\right)\left(y+z\right)}{z}\)
\(=3\left(x+y+z\right)+\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)
\(\ge3\left(x+y+z\right)+\frac{\left(x+y+z\right)xyz}{xyz}\)\(=4\left(x+y+z\right)=4\left(a+b+c\right)\) (Do x;y;z>0)
\(\Rightarrow A\ge a+b+c\)