ho Tam giác ABC đều , trên tia đối của tia AB lấy điểm D và trên tia đối của Ac lấy điểm E sao cho AD=AE . Gọi M,N,P,Q laanf lượt là trung điểm của BE,AD,AC,AB
a/ C/m BCDE là hình thang cân
b/ C/m CnEQ là hình thang
c/ Tam giác MNP đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phan thanh hằng - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Phan thanh hằng - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Phan thanh hằng - Toán lớp 8 - Học toán với OnlineMath
bn vào Link này xem thử nhé :
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,ABa) Chứng minh rằng tứ giác BCDE là hình thang cânb) Chứng minh rằng tứ giác CNEQ là hình thangc) Tam giác MNP là tam giác đề - Tìm với Google
Hok tốt
# EllyNguyen #
Đề bài bị sai
Đề đúng: Gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE; AD; AC; AB.
Bài giải:
a) \(\Delta\)ABC đều
=> ^BAC = 60 độ
mà ^ EAD = ^BAC ( đối đỉnh)
=> ^EAD = 60 độ
Xét \(\Delta\) EAD có ^EAD = 60 độ và AE = AD
=> \(\Delta\)EAD đều
=> ^EDA = ^ABC (= 60 độ ) mà hai góc này ở vị trí so le trong
=> ED//BC (1)
Xét \(\Delta\) EAB và \(\Delta\)DAC có:
AE = AD ;
^ EAB = ^DAC ( đối đỉnh)
AB = AC
=> \(\Delta\)EAB = \(\Delta\)DAC
=> ^BEA = ^CDA
mà ^ AED = ^ ADE ( \(\Delta\)AED đều )
=> ^ BEA + ^AED = ^CDA + ^DAC
=> ^BED = ^CDA (2)
Từ (1) ; (2) => Tứ giác BEDC là hình thang cân.
b) ED // BC ( theo 1)
=> \(\frac{AE}{AC}=\frac{AD}{AB}=\frac{2AN}{2AQ}=\frac{AN}{AQ}\)
=> \(\frac{AE}{AC}=\frac{AN}{AQ}\)
=> EN//CQ
=> CNEQ là hình thang.
Bạn kham khảo nha:
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Math
Câu hỏi của Phan thanh hằng - Toán lớp 8 - Học toán với OnlineMath