\(\frac{\text{(2007−x)^2+(2007−x)(x−2008)+(x−2008)^2}}{\text{(2007−x)^2−(2007−x)(2008−x)+(x−2008)^2}}=\frac{19}{49}\)Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}=\frac{19}{49}\)
điểu kiện xác định x khác 2007 and x khác 2008
Đặt a=x-2008 ( a khác 0 ,) ta có hệ thức
\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\)
=>\(\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
=>\(49a^2+49a+49=57a^2+57a+19\)
=>\(8a^2+8a-30=0\)
=>\(\left(2a-1\right)^2-4^2=0=>\left(2a-3\right)\left(2a+5\right)=0\)
=>\(\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}}\)(Thỏa mãn điều kiện)
Tự thay a xong suy ra x nhá
Mệt lắm r
\(A=\frac{2006+2007}{2006.2007}=\frac{2006}{2006.2007}+\frac{2007}{2006.2007}=\frac{1}{2007}+\frac{1}{2006}\)
\(B=\frac{2007+2008}{2007.2008}=\frac{2007}{2007.2008}+\frac{2008}{2007.2008}=\frac{1}{2008}+\frac{1}{2007}\)
Vì \(\frac{1}{2007}+\frac{1}{2006}>\frac{1}{2008}+\frac{1}{2007}\)
=> \(A>B\)
Ta có : \(\frac{x+2011}{1}+\frac{x+2008}{2}+\frac{x+2007}{3}+\frac{x+2011}{5}=-15\)
\(\Rightarrow\left(\frac{x+2011}{1}+5\right)+\left(\frac{x+2008}{2}+4\right)+\left(\frac{x+2007}{3}+3\right)+\left(\frac{x+2008}{4}+2\right)+\left(\frac{x+2011}{5}+1\right)\)
\(=0\)
=> \(\frac{x+2016}{1}+\frac{x+2016}{2}+\frac{x+2016}{3}+\frac{x+2016}{4}+\frac{x+2016}{5}=0\)
=> \(\left(x+2016\right)\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)=0\)
Vì \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\ne0\)
=> x + 2016 = 0
=> x = -2016
Vậy x = -2016
x+(x+2008)1/2+(x+2007)1/3+(x+2008)1/4+(x+2011)1/5=-15-2011=-2026
<=> x+x/2+1004+x/3+669+x/4+502+x/5+2011/5=-2026
<=>x+x/2+x/3+x/4+x/5+2011/5=-2026-1004-669-502=-4201
<=>x(1+(1)/(2)+(1)/(3)+(1)/(4)+(1)/(5))=-4201-(2011)/(5)=-23016/5
<=>x=-23016/5:(1+1/2+1/3+1/4+1/5)=-2016
Ta có: \(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(2008-x\right)+\left(x-2008\right)^2}\)
\(=\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}\)
\(=1\)