x+xy=3
tìm xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-3x^3y^5\)
Các đơn thức đồng dạng là \(x^3y^5;\dfrac{1}{2}x^3y^5;7x^3y^5\)
\(A=\left(-7x^2y^2\right).\dfrac{3}{7}xy^3=\left(-7.\dfrac{3}{7}\right)\left(x^2.x\right)\left(y^2.y^3\right)=-3x^3y^5\)
3 đơn thức đồng dạng với đơn thức A là: x3y5,2x3y5,3x3y5
\(A=-3x^3y^5\)
Các đơn thức đồng dạng là \(-5x^3y^5;x^3y^5;\dfrac{1}{2}x^3y^5\)
1 do (x-1)4 là số tự nhiên,(y+1)^4 là số tự nhiên
nên để tổng bằng 0 thì cả (x-1)4 và (y+1)^4cùng bằng 0
nên x=0,y=-1
thay x,y vào rồi tính C
ta có:\(A=\left|x+1\right|+\left|x+2\right|+...+\left|x+9\right|=14x\left(1\right)\)
do \(\left|x+1\right|\ge0,\left|x+2\right|\ge0,....,\left|x+9\right|\ge0\)
\(\Rightarrow14x>0\)\(\Rightarrow x>0\)
khi đó (1) trở thành:x+1+x+2+x+3+...+x+9=14x
\(\Rightarrow9x+45=14x\)
\(\Rightarrow45=5x\)
\(\Rightarrow x=9\)
\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)
\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)
\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)
a,xy=2
=>x=2 ; y =1 hoặc x=1 ;y=2
b,xy=6
=>x=2;y=3 hoặc x=3 ; y=3
c,xy=12
=>x=2;y=6 hoặc x=6;y=2
=>x=3;y=4 hoặc x=4;y=3
d,xy=40 (x>y)
vì x>y
=>x=8;y=5
e,xy=30 (x<y)
vì x<y
x=5;y=6
X=3,,,,,Y=0