K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

a) Vì AB là đường kính \(\Rightarrow\angle AEC=90\) mà \(\angle MOC=90\Rightarrow OMEC\) nội tiếp

b) Xét \(\Delta AMO\) và \(\Delta ACE:\) Ta có: \(\left\{{}\begin{matrix}\angle AOM=\angle AEC=90\\\angle CAEchung\end{matrix}\right.\)

\(\Rightarrow\Delta AMO\sim\Delta ACE\Rightarrow\dfrac{AM}{AO}=\dfrac{AC}{AE}\Rightarrow AM.AE=AO.AC=2R^2\)

Ta có: \(CD^2=CO^2+OD^2=2R^2\Rightarrow AM.AE+CD^2=4R^2\)

c) \(\Delta AMO\sim\Delta ACE\Rightarrow\dfrac{AC}{AE}=\dfrac{AM}{AO}=\dfrac{1}{2}=\dfrac{AD}{DN}\)

Xét \(\Delta ADN\) và \(\Delta AEC:\) Ta có: \(\left\{{}\begin{matrix}\angle ADN=\angle AEC=90\\\dfrac{AC}{AE}=\dfrac{AD}{DN}\end{matrix}\right.\)

\(\Rightarrow\Delta ADN\sim\Delta AEC\Rightarrow\angle AND=\angle ACE=\angle AMO\Rightarrow AMND\) nội tiếp

mà \(\angle ADN=90\Rightarrow\angle AMN=90\Rightarrow NM\bot AE\) mà \(CE\bot AE\)

\(\Rightarrow MN\parallel CE\)

d) Ta có: \(AM=\sqrt{AO^2+OM^2}=\dfrac{\sqrt{5}}{2}R\)

\(\Delta AMO\sim\Delta ACE\Rightarrow\dfrac{AE}{AC}=\dfrac{AO}{AM}=\dfrac{R}{\dfrac{\sqrt{5}}{2}R}=\dfrac{2}{\sqrt{5}}\)

\(\Rightarrow AE=\dfrac{4}{\sqrt{5}}R\)

AMND nt \(\Rightarrow\angle MAN=\angle MDN=\angle MDA=\angle MNA\Rightarrow\Delta MAN\) vuông cân tại M \(\Rightarrow MN=MA=\dfrac{\sqrt{5}}{2}R\)

Ta có: \(S_{ANE}=\dfrac{1}{2}NM.AE=\dfrac{1}{2}.\dfrac{\sqrt{5}}{2}R.\dfrac{4}{\sqrt{5}}R=R^2\)

về ý tưởng cơ bản là vậy,còn mình có tính toán gì sai thì bạn sửa nhé

 

 

1 tháng 5 2018

B A D C O M E

a)+)tứ giác ABCD có 2 đường chéo bằng nhau AC=BD , vuông góc với nhau và cắt nhau tại trung điểm mỗi đường

=> Tứ giác ABCD là hình vuông

+) Tam giác AOB vuông tại O, có OA=OB=R, theo Pytago thuận:

=> \(AB^2=OA^2+OB^2=2R^2\)

Khi đó diện tích tứ giác ABCD:

\(S=AB^2=2R^2\)

b) +) góc AEC=90' ( góc nội tiếp chắn nửa đường tròn)

Ta có: góc MOC + góc MEC =180=> OMEC nội tiếp đường tròn đường kính MC

Theo Pytago thuận ta có:

\(MC^2=OM^2+OC^2=\frac{R^2}{4}+R^2=\frac{5R^2}{4}\Rightarrow MC=\frac{R\sqrt{5}}{2}\)

\(\Rightarrow S=\frac{MC^2}{4}.\pi=\frac{5R^2}{16}.\pi\)

c) MA=MC (M thuộc trung trực AC)=> tam giác MAC cân tại M=> MCA=MAC

Tương tự, ta có OAE=OEA

=> OEA=MCA

=> \(\Delta OAE~\Delta MAC\left(g.g\right)\)

\(\Rightarrow\frac{OA}{MA}=\frac{AE}{AC}\Leftrightarrow MA.AE=OA.AC=2R^2\)

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0
3 tháng 2 2020

Xét \(\Delta COM\)và \(\Delta CED\)có:

     \(\widehat{COM}=\widehat{CED}=90^0\)

     \(\widehat{ECD}\): góc chúng

Do đó \(\Delta COM\)\(\approx\Delta CED\left(g.g\right)\)

\(\Rightarrow\frac{CO}{CE}=\frac{CM}{CD}\Leftrightarrow CM.CE=CO.CD=R.2R=2R^2\)(1)

\(\Delta OBD\)vuông tại O nên \(BD^2=OB^2+OD^2\)(định lý Pythagoras)

\(=R^2+R^2=2R^2\)(2)

Từ (1) và (2) suy ra \(CM.CE+BD^2=2R^2+2R^2=4R^2\)

3 tháng 2 2020

điểm N lm j z bạn

7 tháng 11 2016

Bài 2 nếu ai giải được thì làm ơn gửi cho mình cách giải nhé!!Mình cũng có bài này mà ko giải được

3 tháng 2 2017

gõ sai ND kìa

20 tháng 12 2023

loading... loading...