Cho tam giác ABC vuông tại A . Vẽ về phía ngoài tam giác các tam giác đều ABD và ACE . Gọi I là giao điểm của BE và CD. Chứng minh rằng:
a) BE=CD
b) tam giác BDE là tam giác cân
c) góc EIC =60 độ và IA là tia phân giác của góc DIE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath
a:
góc BAE=góc BAC+góc CAE=góc BAC+60 độ
góc CAD=góc CAB+góc BAD=góc BAC+60 độ
=>góc BAE=góc CAD
Xét ΔABE và ΔADC có
AB=AD
góc BAE=góc DAC
AE=AC
=>ΔABE=ΔADC
b: ΔABE=ΔADC
=>góc ABE=góc ADC
=>góc ABM=góc ADM
Xét tứ giác ADBM có
góc ABM=góc ADM
=>ADBM là tứ giác nội tiếp
=>góc DMB=góc DAB=60 độ
góc DMB+góc BMC=180 độ(kề bù)
=>góc BMC=180-60=120 độ
a) Ta có góc DAC=60o+góc BAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
DA=BA
góc DAC=góc BAC
AC=AE
Nên tam giác ADC= tam giác ABE (c.g.c)
b) J thuộc DC sao cho DJ=BI
Xét tam giác ADJ và tam giác ABI có:
AD=AB
góc ADJ=góc ABI (vì tam giác ADC= tam giác ABE)
DJ=BI
Nên tam giác ADJ= tam giác ABI (c.g.c)
Suy ra AJ=AI (2 cạnh tương ứng)
Mà góc JAI= góc JAB+ góc BAI = góc JAB+ góc DAJ=60o
Nên tam giác AIJ đều nên góc =60o
Lại có tam giác ADJ= tam giác ABI:
Nên góc AIB=góc AJD=180o - góc AJI=120o
=> góc BID = góc AIB- góc AID =60o
c, Théo câu a ta có BE=CD do đó DM=BN
Lại có tam giác DAC = tam giác BAE nên góc ABN= góc ADM
Xét tam giác ABN và tam giác ADM có:
AB=AD
góc ABN= góc ADM
BN=DM
=> tam giác ABN = tam giác ADM => AN=AM; góc DAM= góc BAN
=> góc DAM - góc BAM = góc BAN- góc BAM = AM=AN; góc MAN= góc DAB =60o
=> tam giác AMN là tam giác đều
d, Ta có:
góc AIE= 180o - góc AIB =180o - góc AID - góc BID =1800-600-600
= 60^o = AID
=> đpcm
làm cho t vs, đề cx rs đó
Bạn tham khảo, có cả hình vẽ và bài làm nữa nhé: https://h7.net/hoi-dap/toan-7/chung-minh-tam-giac-bde-can-biet-cac-tam-giac-deu-abd-va-ace-faq380037.html