K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2018

+, Nếu x+y+z+t = 0

=> E = -1 + (-1) + (-1) + (-1) = -4

+, Nếu x+y+z+t khác 0 thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z = x+y+z+t/y+z+t+z+t+x+t+x+y+x+y+z = 1/3

=> x = 1/3.(y+z+t) ; y = 1/3.(z+t+x) ; z = 1/3.(t+x+y) ; t = 1/3.(x+y+z)

=> x=y=z=t

=> E = 1+1+1+1 = 4

Vậy ............

Tk mk nha

1 tháng 2 2018

áp dụng định lí Pain có

\(\frac{\left(x+y+z+t\right)}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

tương tự

theo định lí Pain có

\(E=\frac{2\left(x+y+z+t\right)}{2\left(x+y+z+t\right)}=1\)

P/S : chém bừa ( i love you)

1 tháng 2 2018

\(\text{Xét 2 khoảng ta có:}\)

  *  \(\text{Nếu x + y + z + t = 0 thì }E=-1+-1+-1+-1=-4\)

  *  \(\text{Nếu }x+y+z+t\ne0\text{ thì }\)

 \(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{y+z+t+x+z+t+x+y+t+x+y+z}=\frac{1}{3}\left(\text{Dãy tỉ sô băng nhau}\right)\)

  \(\Rightarrow x=\frac{1}{3\left(y+z+t\right)};y=\frac{1}{3\left(x+z+t\right)};z=\frac{1}{3\left(x+y+t\right)};t=\frac{1}{3\left(x+y+z\right)}\)

\(\Rightarrow x=y=z=t\)

Lấy ví dụ là x ta có:

\(E=\frac{2x}{2x}+\frac{2x}{2x}+\frac{2x}{2x}+\frac{2x}{2x}=4\)

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 8 2017

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

- Nếu \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

=> \(P=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=1+1+1+1=4\)

- Nếu \(x+y+z+t=0\Rightarrow x+y=-\left(z+t\right);y+z=-\left(t+x\right);z+t=-\left(x+y\right);t+x=-\left(y+z\right)\)

=> \(P=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}=\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P = 4 hoặc P = -4

4 tháng 8 2016

TA CÓ : ( x / y + z + t ) + 1 = ( y / z +t + x ) + 1 = ( t / x + y + z ) + 1 

Suy ra : x+y+z+t / y+z+t = x+y+z+t / z+t+x = x+y+z+t / t+x+y = x+y+z+t / x+y+z 

do x+y+z+t khác 0 suy ra x=y=z=t suy ra M= 1+1+1+1 =4 leuleu tích đúng nha

xét x+y+z+t=0

=>x+y=-(z+t)

y+z=-(t+x)

\(\Rightarrow M=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{x+y}{-\left(x+y\right)}+\frac{y+z}{-\left(y+z\right)}+\frac{z+t}{-\left(z+t\right)}+\frac{t+x}{-\left(t+x\right)}\)

\(=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

xét x+y+z+t\(\ne0\)

\(\frac{x}{y+z+t}+\frac{y}{x+z+t}+\frac{z}{x+y+t}+\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

=>3x=x+y+z

=>4x=x+y+z+t

3y=x+z+t

=>4y=x+y+z+t

3z=x+y+t

=>4z=x+y+z+t

3t=x+y+z+t

=>4t=x+y+z+t

=>4x=4y=4z=4t

=>x=y=z=t

\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{y+z}=\frac{x+y}{x+y}+\frac{x+y}{x+y}+\frac{x+y}{x+y}+\frac{x+y}{x+y}\)

=1+1+1+1=4

Vậy P=-4 khi \(x+y+z+t=0\)

P=4 khi \(x+y+z+t\ne0\)

24 tháng 12 2016

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

  • Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

Khi đó \(P=1+1+1+1=4\)

  • Xét \(x+y+z+t=0\Rightarrow\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{cases}\)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

 

24 tháng 12 2016

ms đúng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

12 tháng 7 2017

Ta có: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}\)

Thêm 1 vào mỗi phân số ta được:

\(\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{x+t+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{x+t+y}=\frac{x+y+z+t}{x+y+z}\)

- Nếu x + y + z + t \(\ne\) 0 thì x = y = z = t

\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=1+1+1+1=4\)

- Nếu x + y + z + t = 0 thì x + y = -(z + t)

                                         y + z = -(t + x)

                                         z + t = -(x + y)

                                         t + x = -(y + z)

\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

10 tháng 3 2019

Tham khảo lời giải tải đây nha : http://123link.vip/TJMUnni